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Abstract 

Bacterial vaginosis (BV) arises from a disruption in the vaginal microbiome, primarily 

characterized by a decrease in Lactobacilli and an overgrowth of bacteria like Gardnerella 

vaginalis. These findings highlight the potential of plant-derived AMPs as novel, effective 

treatments for BV, offering a pathway to combat antimicrobial resistance and recurrence. In 

silico study was conducted to screen and characterize AMPs from Thymbra capitata and Zataria 

multiflora, two plants with well-documented medicinal properties designed to target the ABC 

transporter permease protein in G. vaginalis, a key contributor to antimicrobial resistance. 

Structural and physicochemical analyses were conducted to assess peptide stability, 

hydrophilicity, and membrane interaction potential. Analysis revealed that TCCP-1, a peptide 

from T. capitata, is more stable and hydrophilic, while ZMLP-2 from Z. multiflora exhibits 

higher hydrophobicity, making it more suited for membrane interactions. These characteristics 

suggest that these plant-derived peptides have properties favorable for treating BV. Plant-derived 

antimicrobial peptides (AMPs), especially those from T. capitata and Z. multiflora, show 

potential as innovative treatments for bacterial vaginosis (BV), offering a holistic and effective 

approach while mitigating antimicrobial resistance and recurrence. In silico analysis suggests 

that the identified transporter in G. vaginalis is likely an integral membrane protein, a critical 

insight for docking studies as interactions with membrane-bound proteins differ from those in the 

cytoplasm or extracellular space. Targeting this protein with AMPs could disrupt cellular 

transport and division, impairing the pathogen's ability to survive and propagate. 
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Introduction 

Bacterial vaginosis (BV) is the most common vaginal infection among women of reproductive 

age, affecting 40% to 50% of women that can lead to pelvic inflammatory disease. It increases 

the risk of sexually transmitted infections (STIs) and preterm delivery in pregnant women (Go et 

al. 2006, Deese et al. 2018, Russo et al. 2019). BV results from an imbalance in the vaginal 

microbiome, characterized by a reduction in Lactobacilli and an overgrowth of bacteria like 

Gardnerella vaginalis. Although it is not classified as an STI but sexual activity, including 

multiple partners and practices like douching, can contribute to its development. BV affects 



women worldwide, with varying prevalence depending on factors like region, ethnicity, and 

socioeconomic status (Abou Chacra et al. 2022).  

Standard treatments for BV include antibiotics like metronidazole and clindamycin, which have 

high cure rates but suffer from frequent recurrences due to bacterial biofilms and antibiotic 

resistance. Herbal remedies like Allium sativum show potential in reducing biofilm formation 

and recurrence (Najafi et al. 2019). Antimicrobial peptides (AMPs) from plants and animals 

offer a promising alternative by targeting microbial membranes without inducing significant 

resistance or harming host cells. These peptides also disrupt biofilms and boost immune 

responses, potentially providing a longer-lasting solution for treating BV and related infections 

(Javed et al. 2019, Greenbaum et al. 2019).  

This study uses in silico tools and algorithms to screen and characterise antimicrobial peptides 

from specific plant species. Thymbra capitata and Zataria multiflora are both aromatic plants 

belonging to the Lamiaceae family that are well-known for their strong antimicrobial qualities, 

especially against fungal and bacterial infections. According to Shokri and Sharifzadeh (2017), 

Z. multiflora includes thymol, carvacrol, and p-cymene, which have potent antibacterial and 

antifungal properties against strains of Candida albicans, E. coli and S. aureus inhibiting the 

production of biofilms. It works especially well against resistant strains (Shokri and Sharifzadeh 

2017). There has also been emphasis on its potential for treating vaginal infections due to 

candida (Rezaie Keikhaie et al. 2018). T. capitata, also referred to as conehead thyme, has broad-

spectrum antibacterial activity against pathogens such as C. albicans, E. coli and S. aureus due to 

high carvacrol and thymol. These former mentioned plants are resistant to many drugs due to its 

effectiveness against many pathogenic strains and its ability to dissolve biofilms (Raut and 

Karuppayil 2016, Almeida et al. 2022). Besides T. capitata has also been investigated for its 

potential to increase shelf life and serve as a natural preservative in food preservation (Soković et 

al. 2010). Both plants are still gaining popularity because of their ability to treat respiratory and 

gastrointestinal illnesses as well as their wider uses in food and medical goods. According to 

research, they have the potential to be used in pharmaceutical formulations that fight microbial 

illnesses while having fewer side effects than traditional antibiotics (Delgado-Adámez et al. 

2017).  

In the present study, an attempt has been made to screen and characterize antimicrobial peptides 

from selected plant species by in silico methods. Besides the interaction of AMPs with microbial 

membranes has also been predicted. Such studies helps to understand the mechanism of action, 

optimize stability, solubility, and resistance to proteolytic degradation. 

Materials and Methods 

Target Selection and localization: The non-redundant proteome of G. vaginalis was analyzed 

using the BLAST tool to assess similarity with Homo sapiens. Predictions were based on 

machine learning algorithms combined with known localization signals, with higher scores 

indicating greater confidence. PSORTb (https://www.psort.org/psortb/) was used to analyzing 

the protein's amino acid sequence for features like signal peptides and transmembrane domains 

(Yu et al. 2010). Parameters, including organism type, were selected to customize predictions. 



Conserved Domains and Functional Motifs: The amino acid sequence of the target protein was 

uploaded to the InterPro online database (https://www.ebi.ac.uk/interpro/) which utilized 

prediction algorithms such as Pfam, SMART, and TIGRFAMs to identify conserved domains 

and functional motifs. The output provided a detailed summary of protein families, domains, and 

associated biological functions (Blum et al. 2021). 

Homology Modeling: Swiss-Model (https://swissmodel.expasy.org/) was employed for three-

dimensional structure prediction due to non-availability of experimental structure for the target 

protein in the Protein Data Bank (PDB). The target protein's amino acid sequence was submitted 

to Swiss-Model to search for the suitable homologous templates. A homology model was 

generated based on sequence alignment with the selected template upon finding a suitable match. 

Sample Source for AMP: Plant species, T. capitata and Z. multiflora, were selected for the 

design of peptides. 

Data Mining and Sequence Retrieval: Protein sequences were obtained from the NCBI 

database. Selected proteins were analyzed for antimicrobial activity using various prediction 

tools, including APD3 (Wang, Li, and Wang 2016), CAMPR4 (Gawde et al. 2023), AMPGram 

(Burdukiewicz et al. 2020), iAMPpred (Meher et al. 2017), DRAMP (Shi et al. 2022) and 

AMPfun (Chung et al. 2020).  

Screening and Designing of Antimicrobial Peptides: Six machine-learning tools were utilized 

to predict antimicrobial potential. Each tool employs different algorithms and methodologies e.g 

APD3 that uses sequence comparison to match query peptides with known AMPs, CAMPR4: 

Utilizes an SVM classifier to score antimicrobial potential based on physicochemical properties, 

AMPGram: Combines multiple classifiers to analyze peptide properties and predict 

antimicrobial activity, iAMPpred: Classifies peptides using SVM and Random Forest 

algorithms based on structural features, DRAMP: Employs sequence alignment and SVM 

methods to predict antimicrobial potential, AMPfun: Applies machine learning to predict 

functional properties of peptides. The predictions were evaluated for consistency and variability 

across the tools. 

Criteria for Peptide Designing: Peptides were selected based on length (10 to 30 amino acids) 

and cationic surface charge (+3 to +6), primarily derived from natural sources, indicating 

potential antimicrobial and therapeutic activities. 

Structure Prediction and Visualization: The primary structure was analyzed using the PEP 

Draw tool, while secondary structures were predicted by using PEP 2D tool. The 3D 

conformations were modelled with PEPFOLD tool (Shen et al. 2014). 

Physicochemical Characterization of Peptides: The physicochemical properties, crucial for 

assessing antimicrobial efficiency and therapeutic potential, were analyzed through a systematic 

in silico approach. Various properties, such as charge, size, amphipathicity, and solubility, were 

examined using multiple tools. 

Amphipathicity and Other Properties: Tools like PepCalc (Lear and Cobb 2016) and Peptide 

2.0 (de la Torre and Albericio 2020) were utilized to evaluate the properties of proposed peptides. 



Toxicity Analysis of Peptide Sequence: Peptide sequences were checked for toxicity using the 

toxin-pred tool, which suggests mutations to adjust toxicity levels (F. Khan, Srivastava, and 

Kumar 2019). OSIRIS tool was used to supplement the results obtained by toxin-pred tool and 

both tools shows nontoxic, non-carcinogenic nature of both peptides with no any reproductive 

irritant behavior (Mukadam and Jagdale 2024). 

Analysis of Hemolytic Activity: The HemoPI tool was used for in silico analysis of hemolytic 

activity, predicting interactions with red blood cell membranes based on the Prob score (Win et 

al. 2017). 

Proteolytic stability and half-life: The proteolytic stability and half-life predicted by peptide 

cutter and HLP tool (Di 2015). 

Identification of signal peptide: SignalP 6.0 was used in this investigation to examine the 

amino acid sequences of the relevant antimicrobial peptides. The SignalP server received the 

sequences and evaluated if signal peptides were present, which help these peptides be secreted 

into particular compartments or outside of cells. Predictions for the signal peptide's cleavage site 

were given by the tool, along with confidence scores that showed the reliability (Teufel et al. 

2022).  

Computational Assessment of Drug-Likeness: The ADMET Lab was used in this investigation 

to evaluate the safety profiles and drug-likeness of the discovered antimicrobial peptides. After 

the peptide sequences were entered into the ADMET Lab interface, several ADMET metrics, 

including as solubility, permeability, metabolic stability, and possible toxicity, were computed. 

Because these predictions were based on well-established datasets and methods, it was possible 

to thoroughly assess the peptides' eligibility for additional development (Dong et al. 2018). 

Peptide Synthesis: Based on the findings, two peptide sequences TCCP 1 and ZMLP 2 were 

synthesized and evaluated for stability against proteases. 

Results 

In this study, we performed an in-depth analysis of the proteome of the reference strain of G. 

vaginalis utilizing a genomic approach. The workflow and subsequent analyses, include 

molecular docking and ADMET analysis, are outlined below. 

Drug target selection: A total of 197 proteins from the non-redundant proteome of G. vaginalis 

were search in BLAST tool for similarity with homosapiens. Subsequent analysis focused on this 

common dataset and 150 proteins were identified as non-homologous to humans. Out of these 

proteins, efflux ABC transporter, permease protein was subsequently used for selecting the final 

drug target for virtual screening, marking a crucial step forward in the drug discovery process.  

Prediction of location of target protein by tool PSORTb: The tool analysis strongly indicates 

that the efflux ABC transporter, permease protein is most likely a cytoplasmic membrane protein 

(Figure 1a).  



 

Figure 1a: The PSORTb result in the image provides a localization prediction for the target 

protein efflux ABC transporter, permease from G. vaginalis (SeqID: KXA17501.1). 

 

Functional Domain prediction in target protein Interpro tool: The result obtained strongly 

support that the efflux ABC transporter permease protein is localized to the cytoplasmic 

membrane, where it likely functions as part of a transport system, likely involved in the efflux of 

substances out of the bacterial cell (Figure 1b).  

 

 

 

Figure 1b: Localization and Functional Role of ABC Transporter Permease in G. vaginalis 

 



Source for Antimicrobial peptide: T. capitata and Z. multiflora were selected for designing 

antimicrobial peptides against G. vaginalis. 

Antimicrobial peptide prediction using machine learning-based prediction tools: The 

antimicrobial potential of Peptide 1 and Peptide 2 was analyzed using six machine learning-

based prediction tools: APD3, CAMPR4, AMPGram, iAMPpred, DRAMP, and AMPfun. These 

results suggest that Peptide 2 may have some antimicrobial activity, but it is much weaker and 

less consistent than Peptide 1, especially given the very low score from iAMPpred (Table 1). 

 

Table 1: Peptide 1 shows much stronger and more consistent antimicrobial activity across all 

tools, while Peptide 2 demonstrates lower and more variable potential. Peptide 1 appears to be a 

more reliable candidate for antimicrobial applications, with its high scores across most prediction 

tools. 

TOOL 

NAME 

APD3 CAMPR4 AMPGram iAMPpred DRAMP AMPfun 

Peptide 1 AMP 0.86 0.90 0.95 0.67 0.6-0.7 

Peptide 2 AMP 0.87 0.52 0.029 0.53 0.6 

 

Structure modeling of target protein: The SWISS-MODEL used efflux ABC transporter, 

permease protein (GenBank: KXA17501.1) as a template to create a 3D structure of efflux ABC 

transporter, permease protein (Figure 2). The template belonged to G. vaginalis bacterium. The 

sequence identity between the amino acid sequences of efflux ABC transporter, permease and the 

reference sequence was 78.05%. Global Model Quality Estimate (GMQE), reflects the overall 

quality of the model based on various factors and a score close to 1 (in this case 0.89) indicates 

good model quality. The Ramachandran plot analysis of the protein structure indicates excellent 

stereochemical quality. A remarkable 96.6% of the non-glycine and non-proline residues are 

located in the most favored regions, surpassing the standard threshold of 90% for a high-quality 

model. Additionally, 3.4% of residues are found in the additional allowed regions, which are still 

geometrically acceptable. Importantly, there are no residues in the generously allowed or 

disallowed regions, indicating that the model has no problematic conformations. Out of a total of 

287 residues, 15 are glycine and 8 are proline, both treated separately due to their unique 

flexibility and rigidity. Overall, the protein model demonstrates exceptional backbone geometry, 

making it a reliable structure for further analysis. 



                                  

                            

Figure 2: Structure prediction of target protein predicted by Swiss modeling 

 

Primary Structure of peptide: The primary structure of TCCP-1 and ZMLP-2 was drawn by 

using the PEP draw tool. The sequences are represented as linear chains of amino acids, with 

each residue labeled according to the standard single-letter amino acid code. TCCP-1 consists of 

14 amino acids CRLIRRRGRIRVIC sequence and is characterized by modification in particular 

amino acids with cyclic structure to increase the stability of peptides. ZMLP-2 is composed of 24 

amino acids, displaying a sequence RLSGHILRCMVHACLLPGATRSSW with modification in 

amino acid sequence to enhance the activity (Table 2) 

Table 2: Designed Antimicrobial Peptides Targeting the Efflux ABC Transporter in G. 

vaginalis 

S.No. Peptide name  Peptide Sequence No. Of Amino Acids 

1. TCCP-1 CRLIRRRGRIRVIC 14 

2. ZMLP-2 RLSGHILRCMVHACLLPGATRSSW 24 

 

Secondary structure prediction by PEP2D tool:The secondary structure of the lead TCCP-1 

and ZMLP-2 construct was predicted from the online server PEP2D tool. The PEP2D predictions 

reveal distinct structural differences between the peptides TCCP-1 and ZMLP-2. TCCP-1 

displays a balanced mix of 14.29% helix, 35.71% sheet, and 50.00% coil, suggesting a flexible 

yet structured conformation that could contribute to stable interactions with other molecules. In 

contrast, ZMLP-2 shows predominantly coil (83.33%) with minimal sheet (16.67%) and no 

helical content, indicating a largely unstructured and flexible nature. These differences imply that 

TCCP-1 may be more stable and suited for specific interactions, while ZMLP-2's flexibility 

could play a role in dynamic or conformationally adaptive functions. 



   

Figure 3: Secondary Structure of Peptide-1 (left) and Peptide-2 (right) predicted by using the 

PEP2D tool 

Tertiary structure prediction: The predicted tertiary structures of Peptide 1 and Peptide 2, 

modeled using the PEPFOLD 3 tool, reveal distinct folding patterns. Both structures are 

represented in a cartoon style with a rainbow color gradient from the N-terminus to the C-

terminus. Peptide 2 shows a more complex structure, with a well-defined alpha-helix highlighted 

in green and yellow, while loop regions are represented in red and orange. This suggests a more 

extensive folding pattern with potential stability. Peptide 1, on the other hand, adopts a simpler 

fold, with a shorter alpha-helix colored in green to blue, and fewer loop regions in yellow to red, 

indicating a more compact conformation. No beta-sheets were observed in both peptides 

structure. These predicted lowest-energy conformations provide insights into the structural 

stability and potential biological function of each peptide, with the color-coded regions aiding in 

identifying the distribution of helices and loops. 

 

   3 D Confirmation of peptide 1                                             3 D Confirmation of peptide 2 

Figure 4: Tertiary structures of Peptide-1 on (left) and Peptide-2 (right), visualized by using 

PEPFOLD-3 tool, alpha-helix colored in green to blue and loop regions in yellow to red. 



Physicochemical Characterization of Peptide 

Hydropathy and Solubility: Peptide 1 (TCCP-1) displayed better water solubility and a strong 

positive charge (pI = 12.8), making it well-suited for biological interactions in aqueous 

environments. In contrast, Peptide 2 (ZMLP-2) showed lower solubility and a more hydrophobic 

character, suggesting it may be more effective in hydrophobic environments such as bacterial 

membranes (Table 3). Peptide 1 is more hydrophilic, highly basic, and readily soluble in water. 

Peptide 2 is more hydrophobic, has lower basicity, and requires stronger solvents for solubility, 

making it better suited for membrane interactions or hydrophobic environments. 

Table 3: Hydropathy, Solubility and hydrophobic of designed antimicrobial peptides by 

Peptide 2.0 Tool 

Property Peptide-1 Peptide-2 

Disulfide Connectivity Cys1 - Cys14 Not indicated 

Number of Residues 14 24 

Molecular Weight 1768.22 g/mol 2665.18 g/mol 

Extinction Coefficient 120 M⁻¹cm⁻¹ 5690 M⁻¹cm⁻¹ 

Isoelectric Point (pI) 12.8 10.36 

Net Charge at pH 7 6 3.1 

Estimated Solubility Good water solubility Poor water solubility 

Hydropathy Mostly hydrophilic More hydrophobic 

Hydrophobicity 35.71% 45.83% 

Acidic 0% 0% 

Basic 42.86% 20.83% 

Neutral 21.43% 33.33% 

Solvent recommendation Water, then acetic acid, TFA Water,then acetic acid,TFA 

 

 

Hemolytic Activity: The Prob Score (Probability Score) indicates the likelihood that a peptide 

will exhibit hemolytic activity, meaning its potential to disrupt or lyse red blood cells (RBCs). 

This score ranges from 0 to 1, with 0 signifying no hemolytic potential (non-hemolytic) and 1 

indicating high hemolytic potential (likely to cause hemolysis). A score closer to 1 implies a 

higher risk of RBC damage, while a score near 0 suggests a safer peptide with minimal 

hemolytic activity, which is crucial in determining whether a peptide is suitable for therapeutic 

use or if modifications are needed. The hemolytic activity prediction is moderate for both 

peptides with a PROB score of 0.48. However, Peptide 1 (TCCP-1), with its higher 

amphiphilicity (1.05), charge (6.00), and lower molecular weight (1770.40 Da), is more likely to 

interact strongly with RBC membranes due to enhanced electrostatic forces and membrane 

insertion capabilities, potentially leading to higher hemolytic activity. In contrast, Peptide 2 

(ZMLP-2), with higher hydropathicity (0.34) and lower charge (3.00), may exhibit weaker 

membrane disruption and potentially lower hemolytic activity. Despite both peptides sharing the 

same PROB score, Peptide 1 is predicted to have stronger hemolytic effects due to its more 

favorable physicochemical properties for membrane interaction (Table 4). 

 

 

 



Table 4: Hemolytic activity of peptides predicted using the HemoPI tool 

Feature Peptide-1 (TCCP-1) Peptide-2 (ZMLP-2) 

PROB Score (Original) 0.48 0.48 

Hydrophobicity (Original) -0.5 -0.09 

Steric Hindrance (Original) 0.72 0.64 

Solvation (Original) -0.2 0.62 

Hydropathicity (Original) -0.06 0.34 

Amphiphilicity (Original) 1.05 0.72 

Hydrophilicity (Original) 0.52 -0.4 

Net Hydrogen (Original) 24 19 

Charge (Original) 6 3 

pI (Original) 12.01 10.43 

Mol Wt (Original) 1770.4 2685.51 

 

Cytotoxicity prediction 

 

Cytotoxicity prediction by Toxin pred tool: Both peptides were predicted to be non-toxic, with 

TCCP-1 displaying greater stability in biological environments. TCCP-1's hydrophilic properties, 

lower molecular weight, and higher positive charge make it more suitable for therapeutic 

applications. It exhibited a higher hydrophilicity (0.52) and lower hydrophobicity (-0.50) 

compared to ZMLP-2, as well as a smaller molecular weight (1770.44) and a higher positive 

charge (6.00). In contrast, ZMLP-2's slight hydrophobicity (-0.09) and higher molecular weight 

(2665.55) may make it better suited for membrane interactions. It displayed lower hydrophilicity 

(-0.40) and a higher hydropathicity (0.34), with a positive charge of 4.00. Although both peptides 

are non-toxic, their different properties suggest distinct potential therapeutic uses. 

 

Figure 5a: Cytotoxicity activity of Peptide-1 on (left) and Peptide-2 on (right) predicted by 

using the Toxin pred tool  

 

 

 

 



Cytotoxicity prediction by OSIRIS tool 

    

 

Figure 5b: The analysis of the peptide-1(left) and peptide-2 on (right) sequence using the 

OSIRIS Property Explorer reveals that both peptides are predicted to have no significant toxicity 

risks, with no warnings for mutagenic, tumorigenic, irritant, or reproductive effects.  

Moreover, the peptide-1 possesses 48 hydrogen bond acceptors and 33 hydrogen bond donors, 

which highlights its potential for strong interactions with water and biological targets. This high 

capacity for hydrogen bonding can enhance solubility but may hinder membrane permeability. 

The structure of the peptide 1 is moderately complex, as indicated by the presence of 14 

stereocenters and 68 rotatable bonds, which could affect its interaction with biological targets. 

The drug score of 0.25, although modest, suggests that the peptide may still have potential for 

drug development, but significant modifications would likely be required to improve its 

formulation, delivery, and overall drug-like properties. In summary, while the peptide shows no 

major toxicity risks, its hydrophilic nature, poor permeability, and low drug likeness score 

present challenges that would need to be addressed to enhance its viability as a therapeutic 

candidate. 

The molecular weight of 2,667.22 suggests that the peptide-2 is relatively large, which might 

affect its bioavailability. Despite these issues, the drug likeness score of 1.20 and drug score of 

0.44 indicate some potential for the peptide in drug development, provided that delivery and 

formulation challenges can be addressed. The peptide also shows a high number of hydrogen 

bond acceptors (67) and donors (39), which may facilitate interactions with biological targets, 

but its stereochemical complexity (24 stereocenters) and a high number of rotatable bonds 

suggest significant flexibility, which could influence its conformational stability and interaction 

specificity. Overall, while the peptide presents some favorable characteristics for drug 

development, its high hydrophilicity and poor solubility may pose hurdles that require 

optimization. 

 

 



Proteolytic stability and half-life of peptide: The two peptide sequences, CRLLRRRGGRIVIC 

(14mer), and RLSGHILRCMVHACLLPGATRSSW (24mer), show different characteristics in 

terms of stability and biochemical properties. A normal half-life value is approximately 0.500–

1.000 seconds for peptides in intestine-like environments. The 24-mer peptide has a half-life of 

0.534 seconds, which falls within the normal range, while the 14-mer peptide has a slightly 

longer half-life of 0.892 seconds, indicating higher stability in this environment. Both peptides 

are classified as having normal overall stability, but the 14mer shows greater relative stability 

(3.321) compared to the 24mer (3.008). Additionally, the 14mer is more hydrophobic (16.171 

KJ/mol) than the 24mer (1.525 KJ/mol), suggesting stronger non-polar interactions. The 14mer 

also has a higher charge (6.000 vs. 0.400 for the 24mer), which may affect its solubility and 

behavior in biological environments. The 24mer is larger, with a higher molecular weight 

(2665.550 g/mol vs. 1770.440 g/mol for the 14mer), and has a slightly lower isoelectric point 

(6.585 vs. 7.900), meaning it behaves differently at various pH levels. Both peptides have normal 

thermodynamic properties, but the 14mer may be more favorable for dissolution in water due to 

its lower free energy of solution. 

 

Figure 6a: Proteolytic stability of Peptide-1 on (left) and Peptide-2 on (right) by Peptide cutter 

tool 

 

     

Figure 6b: Half-life of Peptide-1 on (left) and Peptide-2 on (right) predicted by HLP tool 

 



4.5. Prediction of signal peptide 

 

 

Figure 7: The results strongly indicate that this Peptide-1 on (left) and Peptide-2 on (right) do 

not have characteristics of a typical signal peptide for secretion. It is likely not targeted for 

transport via the classical secretory pathways (like the Sec pathway), implying that the sequence 

may be a cytosolic or internal peptide 

 

ADMET Analysis 

    



Figure 8: The ADMET lab results indicate that the peptide -1 on (left) predicted to be drug-like 

with a probability of 94.6% and peptide-2 (right) falls into category 1, indicating drug-likeness, 

with a high probability of 94.6%. 

The ADMETlab results indicate that the peptide 1 has been evaluated for drug likeness using a 

Random Forest model. The model shows an accuracy of 80.1% and an AUC (Area Under the 

Curve) of 0.870, signifying good model performance in distinguishing between drug-like and 

non-drug-like compounds. The descriptors used for this prediction are MACCS fingerprints, 

which are commonly applied for representing molecular structures. According to the results, the 

compound is predicted to be drug-like with a probability of 94.6%, indicating a strong likelihood 

of being classified as a potential drug candidate. On the other hand, for the peptide 2 sequence 

indicate a high likelihood of being drug-like, based on the Random Forest model. The model 

maintains an accuracy of 80.1% and an AUC of 0.870, demonstrating reliable performance in 

distinguishing drug-like compounds. According to the results, the peptide falls into category 1, 

indicating drug-likeness, with a high probability of 94.6%. This suggests a strong confidence in 

the classification of the peptide as drug-like. A partial representation of the peptide's molecular 

structure is also displayed, further supporting the analysis. Overall, the prediction indicates that 

these peptides have significant potential as a drug-like compound based on the model's evaluate 

on. 

Docking: The results from the HADDOCK docking of your target protein with peptide 1 suggest 

a reliable interaction, particularly in Cluster 2, which has a HADDOCK score of -50.0 ± 0.7, 

indicating strong overall binding. The cluster size of 21 suggests that this conformation occurs 

frequently among the generated models, making it more likely to represent a valid interaction. 

The RMSD from the lowest-energy structure is 3.8 ± 0.1 Å, showing that the structures within 

the cluster are similar but exhibit some variability in positioning. Both Van der Waals energy and 

electrostatic energy contribute significantly to the stability of the interaction, with values of -33.9 

± 4.3 kcal/mol and -123.4 ± 28.6 kcal/mol, respectively, highlighting favorable close contacts 

and strong electrostatic forces between the protein and peptide. The desolvation energy is 

relatively low at 3.2 ± 1.9 kcal/mol, indicating that displacing water molecules does not pose a 

significant barrier to binding. However, the restraint violation energy of 54.6 ± 21.5 kcal/mol 

suggests some deviations from the expected conformation, though the standard deviation implies 

variation across the models in this cluster. The buried surface area of 1008.8 ± 21.0 Å² further 

supports strong binding, as a substantial portion of the peptide is involved in the interaction. 

Finally, the Z-score of -1.8 indicates that Cluster 2 is a reliable solution, being 1.8 standard 

deviations better than the average cluster score. In summary, Cluster 2 represents a promising 

and stable docking model with strong binding energies, although some restraint violations and 

structural variability should be noted. 



  

Figure 9: This molecular docking model illustrates the interaction between peptide 1(on Left) 

and peptide 2 (on right) depicted in orange and the target protein (shown in blue). The structural 

alignment of both the peptide and the protein reveals complementary interactions, which likely 

enhance the stability and affinity of the complex. 

The docking results of peptide 2 with the target protein, as analyzed by HADDOCK, indicate a 

favorable and reliable interaction. Cluster 4, with a HADDOCK score of -60.7 ± 6.7, represents 

one of the best docking solutions, suggesting strong binding affinity between the peptide and the 

protein. The relatively low root-mean-square deviation (RMSD) of 1.0 ± 0.6 Å further supports 

the consistency of this cluster, indicating that the conformations within the cluster are very 

similar to the overall lowest-energy structure. Energetically, the interaction is characterized by 

strong non-covalent forces, reflected in the significant Van der Waals energy of -42.9 ± 6.0 

kcal/mol and electrostatic energy of -42.1 ± 31.8 kcal/mol. Despite the variability in electrostatic 

interactions, the desolvation energy of -28.7 ± 6.1 kcal/mol suggests a favorable interaction in 

the absence of water molecules at the binding interface. 

Moreover, the buried surface area (BSA) of 1339.4 ± 125.6 Å² indicates that a large portion of 

the peptide is engaged with the protein, which is indicative of a stable and strong interaction. 

However, the restraints violation energy of 193.6 ± 46.0 kcal/mol suggests that some 

experimental restraints may not be fully respected in certain docking poses, indicating room for 

improvement in refining the interaction. Overall, with a Z-score of -2.1, this cluster stands out as 

one of the more reliable docking solutions, as it deviates significantly from the average cluster, 

confirming that peptide 2 likely exhibits strong and stable binding to the target protein. 

Discussion 

In this study, Thymbra capitata and Zataria multiflora were chosen for peptide sequencing due 

to their documented antimicrobial and medicinal properties, making them valuable candidates 

within the Lamiaceae family. This plant family is renowned for its bioactive secondary 

metabolites, traditionally researched for their essential oils known to exhibit antibacterial, 

antifungal, and antioxidant activities (S. Khan et al. 2023). However, this research took a novel 

approach, focusing on the lesser-explored antimicrobial peptides (AMPs) within these plants. 

With plant-derived AMPs gaining attention as alternatives to conventional antibiotics, these 

species represent untapped resources for potential therapeutic compounds (Frezza et al. 2019, 

Dawood et al. 2022). Recent studies have supported this exploration, with findings from other 



Lamiaceae plants revealing AMPs with similar antimicrobial efficacy (Tanhaeian, Sekhavati, and 

Moghaddam 2020). 

The investigation led to the identification of two specific peptides: TCCP-1 from Thymbra 

capitata and ZMLP-2 from Zataria multiflora. TCCP-1 (CRLIRRRGRIRVIC) stood out due to 

its high arginine (R) and cysteine (C) content. Arginine-rich peptides interact strongly with 

bacterial membranes due to their positive charge, which binds effectively to negatively charged 

bacterial surfaces. Meanwhile, cysteine plays a key role in forming disulfide bonds, stabilizing 

the peptide’s 3D structure, thus enhancing resistance to enzymatic degradation and increasing 

antimicrobial efficacy (Sohrabi et al. 2024). This structural stability suggests that TCCP-1 could 

retain its therapeutic potential even under challenging biological conditions. 

ZMLP-2 (RLSGHILRCMVHACLLPGATRSSW) from Zataria multiflora features a 

combination of hydrophobic and hydrophilic residues, highlighting its potential for 

multifunctional activity. Hydrophobic residues, in particular, support interactions with lipid 

membranes, suggesting that ZMLP-2 could efficiently disrupt bacterial membranes. Like TCCP-

1, ZMLP-2’s cysteine residues could form stabilizing disulfide bonds, aiding in proteolytic 

resistance. Its complex sequence hints at potential roles beyond antimicrobial activity, such as 

antioxidant or enzyme-inhibitory functions (Ashraf et al. 2023). As pathogens develop resistance 

to traditional antibiotics, AMPs offer promising alternatives due to their unique mechanisms, 

often disrupting bacterial membranes in ways that are harder for bacteria to resist. 

Further analysis explored the efflux systems and membrane transport proteins that may 

contribute to antibiotic resistance, specifically within Gardnerella vaginalis, an opportunistic 

pathogen. Efflux proteins, like the ABC transporter permease, help expel toxic substances from 

bacterial cells, enhancing survival in hostile environments, including those with immune 

responses or antibiotic presence. Targeting this transporter with AMPs may hinder the bacterial 

cell’s ability to resist antibiotics, thus representing a new therapeutic strategy. In silico analysis 

indicated that this transporter is likely integral to the cell membrane of G. vaginalis, a crucial 

insight for docking studies since interactions with membrane-bound proteins can differ from 

those within the cytoplasm or extracellular space. The protein's transmembrane helices and lack 

of signal peptides align with its role in membrane transport, specifically for substrates essential 

to bacterial function and survival. 

Finally, this protein, a member of the ABC transporter family, includes domains that may also 

regulate cell division, with the FtsX domain suggesting it could be critical for maintaining cell 

integrity and division in G. vaginalis. By targeting this protein, AMPs could potentially disrupt 

cellular transport and division, impacting the pathogen's ability to thrive. 

Conclusion 

This study successfully identified and characterized two antimicrobial peptides (AMPs), TCCP-1 

from Thymbra capitata and ZMLP-2 from Zataria multiflora, designed to target the ABC 

transporter permease protein in G. vaginalis, a key contributor to antimicrobial resistance. These 

peptides were evaluated for their structural, physicochemical, and biological properties. TCCP-1 

showed superior antimicrobial potential, with enhanced stability and solubility. Structural 



analysis indicated TCCP-1 is more stable and hydrophilic, while ZMLP-2 is more flexible and 

hydrophobic, favoring membrane interactions. 
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