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ABSTRACT  

Healthcare is a path-breaking field for big data. By combining electronic medical record data with omics data 

(genomics, proteomics, metabolomics, etc.), lifestyle information (e.g., smoking, drinking, diet, and exercise), 

social determinants of health, and relevant data from wearable devices, a diverse array of clinical and biological 

predictive models can be constructed. In particular, the application of machine-learning (ML) methods for 

clinical risk-prediction modeling has gained impressive momentum in recent years, amassing a wealth of 

reference literature. Unlike traditional statistical approaches commonly utilized in clinical applications, ML 

techniques have the potential to simultaneously leverage high-dimensional, heterogeneous data. 

This contribution reviews multiple important aspects of risk prediction using big data and ML methods, 

including data-sources, framework, performance metrics, and regulation. Relevant clinical applications span 

almost every area, including cardiovascular medicine, oncology, infectious diseases, nephrology, rheumatology, 

and psychiatry. Although numerous ML-based risk-scoring systems with impressive performance are found in 

the literature, external validation and transportability remain critical challenges that merit further exploration. 

 

Keywords :Combining PC-1; PC-2  with ML Ridge regression; SVM Linear; lasso; AUC-ROC curve; area 

under the precision-recall; maximal accuracy Ya.Yu.  et al.; the goodness of fit was evaluated and an internal; 

external validation of the risk score Risk factors; sensitive; specific; especially; AUC-ROC 3829 

clinical/biobanked; 110706 clinically well-characterized; 7400 clinical; 165237 individuals. 

 

1. INTRODUCTION 

Big data, involving high-velocity, high-volume, and high-variety data feeds, presents multiple challenges. 

However, these features confer the ability to comprehend dynamic processes at various resolutions, enabling the 

extraction of critical and useful patterns. Utilizing these properties requires a multi-disciplinary effort across 

several engineering disciplines and presents challenges in automation. New data sources and consumer-facing 

applications, such as smart homes, connected vehicles, and mobile communications, are constantly emerging 

and can influence industry practice and business models. The health domain, where a large amount of data is 

generated every day, and massive amounts of data from heterogeneous sources are available, provides one of the 

best platforms for validating big data theories and techniques. Healthcare covers smart living services, 

personalised medical services, and ubiquitous health monitoring. 

In recent years, the importance of clinical risk prediction for individual patients has been recognised. 

Comprehensive data from different sources can support trustworthy machine learning frameworks and yield 

efficient predictive models for individual patients. High-dimensional risk-scoring systems do not provide 

sufficient coverage and stability for most variables in high-dimensional space; combining supervised learning 

methods and risk scoring can alleviate these two problems. The introduction of big-data-driven machine 

learning frameworks is a promising direction for building personalised prediction models. 

 

1.1. Background and Significance 

The clinical and public health importance of accurate risk prediction is widely acknowledged; intentionally or 

unintentionally, clinicians constantly assess patients' risk of symptoms or disease. When clinicians' intuitive 

assessments are not quantifiable, predictive models developed with large datasets of patients can help clinicians 

estimate the joint effects of multiple patient characteristics. Traditional statistical risk models, such as logistic 

regression, can overcome these limitations for a target population by providing continuous risk score estimates. 

However, the increasing availability of self-reported, continuous, and high-volume healthcare data from 

different sources has made the development of superficially more advanced machine-decision support models 

particularly attractive. Machine learning applies to a broader array of predictive problems than traditional 
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statistical models and can discover common structures in the data without making strong assumptions, leading 

to increased prediction accuracy. 

In addition, there is a growing consensus that traditional statistical analysis methods should be clearly 

differentiated from modern machine learning methods. Although the term "machine learning" remains poorly 

defined, it is currently commonly used in situations in which prediction accuracy is the primary goal of model 

training or selection. In medicine, a reasonable interpretation of this viewpoint is that, when prediction is the 

primary goal, prediction accuracy should be measured with explicitly held-out test data not used in model 

training or selection. In consequence, risk scoring based on supervised machine learning approaches enables 

building continuous risk-scoring functions for predicting future events of interest. A role in linking Big Data and 

clinical risk prediction using supervised machine learning techniques is developed by presenting frameworks for 

Big Data ingestion, preparation, and risk-score generation, while discussing the connections between Big Data 

and the clinical domains of cardiovascular disease and cancer. 

 

 
Fig 1: Big Data–Driven Machine Learning Frameworks 

 

1.2. Research design 

A comprehensive review of clinical risk prediction methodologies, relying on supervised machine learning, is 

presented. The focus is on a dedicated type-III framework that utilizes risk scores estimators, which can be 

valuable for patients, physicians, healthcare organizations, and insurers. Such models predict risks of occurrence 

for primary outcomes as well as risks of developing secondary outcomes, providing a complete clinical risk 

profile. Typical applications include predicting concurrent cardiovascular disease (CVD) and Type 2 diabetes, 

the combined risk of coronary heart disease and breast cancer, and the simultaneous risk of clinical CVD and 

cancer. 

Big data infrastructures for clinical prediction powered by supervised machine learning are reviewed, 

synthesizing existing work and guiding future endeavors. First, state-of-the-art experimental pipelines that 

collect, harmonize, and curate data from a variety of health information systems are examined, creating 

integrated databases containing large volumes of high-dimensional patient information. Next, the emphasis 

shifts to data representation, exploring techniques focused on feature engineering and automatic feature learning 

from raw data. Finally, the discussion covers performance evaluation of the resulting models, good clinical 

practice of machine learning, separation between model development, evaluation, and application, and 

considerations regarding the transportability of predictive models. 

 

2. Foundations of Big Data in Healthcare 

Volume, variety, and velocity describe the three dimensions of Big Data. Health information must also satisfy 

requirements for public and private governance. Regulatory frameworks guarantee the adequate processing of 

sensitive data, thus enabling clinical research. Technological evolution has allowed the integration of multiple 

data sources and types in large databases. These sources include the electronic health record, which contains 

information on patient clinical history, and wearable devices, which collect data on physical activities, vital 

signs, and the external environment. Integration of such data enables the assessment and prediction of health and 

disease through classical statistical techniques and modern machine-learning (ML) approaches. 
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The integration of these two sources leads to prediction models that combine clinical and behavioral 

characteristics for cardiovascular disease (CVD) risk stratification. Such models predict the probability of CVD 

events on the basis of clinical features. Previous studies estimated the prognostic value of combining supervised 

clinical risk scores with interim information on lifestyle changes derived from unconstrained 7-day pedometer 

recordings. The models explored the effect of counseling-based interventions on CVD risk at 1 year. The results 

demonstrated the potential of additionally including bidirectional–individual-centric information in the 

prediction of disease. Furthermore, they proposed an innovative ML architecture for the estimation of risk scales 

in the middle-term temporal range. 

 

Equation 1: Logistic regression (classic risk score baseline) 

Step 1: Model probability with the sigmoid 

Let the linear predictor be 

𝑧𝑖 = 𝛽0 + 𝛽⊤𝑋𝑖  

 

Map it to a probability: 

𝑝𝑖 = 𝑃(𝑌𝑖 = 1 ∣ 𝑋𝑖) = 𝜎(𝑧𝑖) =
1

1 + 𝑒−𝑧𝑖
 

 

Step 2: Bernoulli likelihood 

Because 𝑌𝑖 ∈ {0,1}, 

𝑃(𝑌𝑖 ∣ 𝑋𝑖) = 𝑝𝑖
𝑌𝑖(1 − 𝑝𝑖)

1−𝑌𝑖  

 

For 𝑛independent patients: 

ℒ(𝛽) =  𝑝𝑖
𝑌𝑖

𝑛

𝑖=1

(1 − 𝑝𝑖)
1−𝑌𝑖  

 

Step 3: Log-likelihood (easier to optimize) 

ℓ(𝛽) = log⁡ℒ(𝛽) =   𝑌𝑖 log⁡𝑝𝑖 + (1 − 𝑌𝑖)log⁡(1 − 𝑝𝑖) 

𝑛

𝑖=1

 

 

Step 4: Negative log-likelihood = cross-entropy loss 

Minimizing −ℓ(𝛽)is equivalent to minimizing: 

𝒥(𝛽) = −  𝑌𝑖 log⁡𝑝𝑖 + (1 − 𝑌𝑖)log⁡(1 − 𝑝𝑖) 

𝑛

𝑖=1

 

 

2.1. Data Sources and Data Types      

To realize the vision of empowering healthcare delivery through data and evidence, it is crucial to derive 

actionable insights, such as clinical risk models, from the variety of structured and unstructured data generated 

from multiple data sources at all levels of healthcare delivery. Since all digital services, electronic health 

records, and sensors generate an unprecedented quantity of user-centered data on patients, caregivers, and 

clinicians at different levels of healthcare delivery, the growing volume of these data offers an opportunity to 

develop reliable, robust, and trustworthy Big Data–driven models for clinical risk prediction. A plethora of new 

healthcare data sources exist, but three major data categories—those containing patient-centered, caregiver-

centered, and clinician-centered data—all hold the potential to derive predictions and insights about clinical risk. 

The patient-centered data are related to disease, treatment, and post-treatment outcomes. Caregivers are 

currently involved in helping patients manage chronic diseases more effectively, while clinician-centered data 

are mainly used for training, skill assessment, and surgical risk assessment. 

Apart from traditional healthcare data sources consisting of structured data from patients and health records, 

new unstructured and semi-structured data sources are being generated continuously. Unstructured and semi-

structured data can be mined for information to help make better clinical decisions. These include social media 

data (tweets, posts, articles, and blogs) that share patient experiences, reviews of hospitals, doctor ratings, news 

from health organizations, etc.; data from status updates; patient forums and communities; and patient and 

family blogs that discuss and report on the experience of a specific disease such as cancer, diabetes, or a specific 

mode of treatment such as dialysis. These unconventional data sources can be harnessed for modeling the 

correlation between sentiment and health (Saha & Shankar, 2020), predicting the volume of flu infection (Yang 

& Wu, 2016), predicting the severity of skin diseases (Thiyagarajan &Veloo, 2016), etc. Thus, new healthcare 

data sources complement existing clinical data for different applications across various domains. 
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2.2. Data Quality, Governance, and Privacy  

Healthcare data are inherently complex because they may originate from multiple stakeholders and entities 

within a healthcare system. To ensure that data are conducive to proper analysis, they must be of high quality. 

Poor data quality can arise from incomplete, missing, or inconsistent data. An example of this is the record of a 

pregnant single woman who may have subsequently become divorced during the observation window and then 

have secondary diabetes. Without supporting multiparous cases, data with missing values can create difficulty in 

learning machine learning models, especially decision tree models that can handle missing values directly. 

Model performance in such cases can also be poor. Therefore, the missing value imputation process should be 

carefully designed and applied such that the characteristics of the original data can be preserved. 

Proper data governance mechanisms should be put in place to monitor the accessibility of data in a healthcare 

system in accordance with legal and regulatory requirements. For Big Data analysis in healthcare, the 

establishment of a healthcare data commons can be considered. Such a data commons can then serve as a 

research and collaboration platform for transnational Big-Data-driven research. Because health data also reflect 

sensitive information about each individual's physical condition, errors in the prediction model may lead to the 

disclosure of sensitive ground truth labels. A robust defence mechanism against data leakage should therefore be 

carefully designed and deployed. 

Proper data governance mechanisms are essential to ensure that data accessibility within healthcare systems is 

continuously monitored and aligned with applicable legal, ethical, and regulatory requirements. As Big Data 

analytics becomes increasingly central to healthcare innovation, the establishment of a healthcare data commons 

offers a promising approach to facilitate secure, standardized, and collaborative data sharing across institutions 

and national boundaries. Such a commons can function as a trusted research infrastructure that promotes 

transnational Big-Data-driven studies while enforcing clear policies on data stewardship, accountability, and 

usage rights. However, given that health data inherently contain highly sensitive information about individuals’ 

physical and mental conditions, even indirect disclosures—such as those arising from model inference errors or 

adversarial attacks—can expose confidential ground truth labels. Consequently, robust defense mechanisms 

against data leakage must be carefully designed and integrated throughout the data lifecycle, including strong 

access controls, privacy-preserving analytics, encryption, auditing, and continuous risk assessment. Together, 

these measures help balance the dual imperatives of enabling data-driven discovery and safeguarding patient 

privacy. 

 

 
 

3. Machine Learning Methods for Clinical Risk Prediction 

Supervised learning methods, using a variety of structured data, such as demographic information along with lab 

results and vital parameters measured in routine hospital visits, are appropriate for just-in-time clinical risk 

prediction. Special considerations exist for applications using health-care data, where the model focus is 

measuring the risk of future adverse clinical events, such as 10-year cardiovascular risk-estimation models or 

cancer prediction models that aim to determine the predicted higher-risk population incidence within a timespan 

of 1–3 years. Risk scoring is the natural model output in either case, and ML methods provide a principled way 

to learn from recent data and adapt to changing patterns in the underlying population and environment. 

While established clinical risk-scoring systems typically depend on simple logistic regression fitted on curated 

data sets reflecting expert opinions, Machine Learning (ML) models can use a larger set of candidate predictors, 

employ non-linear interactions between predictors, and use non-parametric assumptions. These differences can 
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lead to improved predictive accuracy, and research has shown that more complex methods can help identify 

latent subgroups. Nevertheless, the scoring ability is a special case of supervised classification in ML, and 

techniques designed for predicting binary outcomes remain applicable even in the presence of an underlying 

severity score. Classes in supervised ML, including decision trees, support vector machines, random forests, 

gradient boosting, or neural networks, are applicable in practice. 

Traditional clinical risk-scoring systems are commonly built using logistic regression models applied to 

carefully curated datasets that reflect established clinical knowledge and expert judgment. While these 

approaches offer interpretability and transparency, they are often limited to a relatively small set of predefined 

predictors and assume linear relationships between variables. In contrast, Machine Learning (ML) models can 

incorporate a much broader range of candidate predictors, capture complex non-linear interactions, and operate 

under fewer parametric assumptions. These capabilities frequently translate into improved predictive 

performance and enable the discovery of latent patient subgroups that may not be apparent through conventional 

modeling techniques. Importantly, clinical risk scoring can be viewed as a specific instance of supervised 

classification, meaning that standard ML methods designed for binary outcome prediction remain applicable 

even when an underlying severity score exists. Consequently, a wide range of supervised learning algorithms—

including decision trees, support vector machines, random forests, gradient boosting methods, and neural 

networks—can be effectively implemented in clinical practice to enhance predictive accuracy and support 

evidence-based decision-making. 

 

 
Fig 2: Machine Learning Methods for Clinical Risk Prediction 

 

3.1. Traditional Statistical Approaches versus Modern ML 

Many applications of predictive analytics for healthcare and health system data rely primarily on traditional 

regression-based statistical methods, including linear regression, logistic regression, Poisson regression, and 

numerous extensions of these general themes. Generally, the adoption of more modern machine-learning 

approaches has been limited. However, much of the potential improvement gain from large-scale clinical data 

for easing prediction posited in the literature hinges upon operating these data through state-of-the-art predictive 

machinery. For many clinical prediction tasks, the features known to be clinically important are available in the 

record and can be reliably represented; the payoff from traditional elegance is often outweighed by avoiding 

predictively irrelevant assumptions. Therefore, machine-learning methods are particularly well suited to these 

tasks. Moreover, for health systems without well-characterized prior risk models, even the direct data from the 

clinical record itself can allow the construction of new, state-of-the-art predictive strategies by employing the 

full set of features present in the record-systems infrastructure. 

The predictive faculties of contemporary supervised learning remain tightly connected to the traditional risk-

scoring models, but the developments of big-data strategies draw upon machine-learning tools requiring less 

algorithmic structure. The elements of risk-scoring models that relate to feature selection, exclusion, and 

transformation can be immensely valuable guides during the model-building process. However, once the 

traditionally important features are either selected or represented, modern predictive machinery can be applied 

directly to the larger data without imposing the higher-level assumption demands of logistic regression. The 

traditional assumption of independence among the risk factors in predicting extreme outcomes need not be held, 

nor is it necessary to balance the errors across the outcome classes. The extension of machine-learning 

developments into the future allows for the effects of ignorance of external causation to be learned directly from 

the relationship among the record features in the full data set. 
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3.2. Supervised Learning and Risk Scoring 

Machine learning has a much broader scope than traditional statistical approaches, including both supervised 

and unsupervised learning methods. Supervised learning involves several tasks, including classification and 

regression, which aim to predict a target variable Y given predictor variables X . For clinical risk scoring, the 

most relevant methods can be classified as regression tasks, where the outcome variable Y is a continuous score 

indicating the probability of entering a risk state. During the development of these models, an event indicator is 

often generated to express whether the patient has entered the risk state that needs to be predicted (Y = 1) or not 

(Y = 0), considering a specific time horizon. 

This event indicator is then used in supervised machine learning methods to learn a function from X to the event 

indicator, usually expressed as f(X) = Y. Various performance evaluations can be used to assess the quality of 

this learned function, which may also be integrated into the risk score. When the performance is satisfactory, the 

risk score is applied to other upcoming cohorts not used in building the model to classify them as entering or not 

entering risk states over a future time period. Consider a group of (external) validation cohorts that have not 

been used in building the model; the output from the index model is usually termed an external validation. 

Alternatively, the prediction task can be termed transportability, where other cohorts are of interest for external 

testing. 

 

Equation 2: Ridge and Lasso (regularized logistic regression) 

Ridge (L2) penalty 

Add 𝜆 ∥ 𝛽 ∥2
2to reduce overfitting: 

𝒥ridge(𝛽) = −  𝑌𝑖 log⁡𝑝𝑖 + (1 − 𝑌𝑖)log⁡(1 − 𝑝𝑖) 

𝑛

𝑖=1

+ 𝜆  𝛽𝑗
2

𝑝

𝑗=1

 

 

Lasso (L1) penalty 

Promotes sparsity (feature selection): 

𝒥lasso(𝛽) = −   𝑌𝑖 log⁡𝑝𝑖 + (1 − 𝑌𝑖)log⁡(1 − 𝑝𝑖) 

𝑛

𝑖=1

+ 𝜆  ∣

𝑝

𝑗=1

𝛽𝑗 ∣ 

 

4. Frameworks for Big Data–Driven Clinical Prediction 

Frameworks for Big Data–Driven Clinical Prediction 

Designing, developing, and deploying accurate clinical risk-prediction models from heterogeneous, high-

dimensional, and fast data sources often requires the use of modern Big Data technologies and tools. The 

framework presented comprises five critical components that together enable the building of ML-based clinical 

risk models. These elements track the flow of data from ingestion to modeling and can be logically decoupled 

into separate modules, each using different technologies, tools, and expertise. 

The first component deals with data ingestion, integration, and storage: collecting data from both static and 

streaming data sources; cleaning, integrating, and fusing the data; and securely storing integrated patient data for 

later access by other pipeline modules. The second component focuses on feature engineering and representation 

learning: automatically generating high-quality predictive features based on raw patient data. The third 

component specializes in training ML models, which may involve additional tasks such as hyperparameter 

tuning, model selection, and optimizing feature subsets for model training. 

 

4.1. Data Ingestion, Integration, and Storage 

The architecture of a typical Big Data–driven ML framework for clinical risk prediction follows a modular and 

layered design. At the bottom layer, the data ingestion, integration, and storage module receives digital 

healthcare datasets from multiple heterogeneous sources and in various formats. Broadly, the data ingestion 

module often executes three main operations: (i) collection, (ii) integration, and (iii) storage. 

First, data are typically collected from unique, independent data sources (e.g., healthcare provider systems and 

wearable devices) that may generate one or multiple data types (e.g., EHRs, laboratory tests, genomic 

sequencing, and imaging). These data sources often operate independently and provide data for only a small 

subset of patients and at discrete time points. Since patients frequently consult multiple healthcare providers, the 

systems of these independent providers need to interoperate for obtaining the patients' complete data records. To 

that end, the data ingestion module usually employs technologies such as Fast Healthcare Interoperability 

Resources (FHIR) and HL7 that ensure interoperability among disparate sources of healthcare data and the 

sharing of patients' data among different organizations and systems to obtain a holistic view of their healthcare 

risk. 
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Equation 3: Linear SVM (for “SVM Linear”) 

Step 1: Hard-margin idea (separable) 

Find a hyperplane 𝑤⊤𝑥 + 𝑏 = 0maximizing margin: 

min⁡
𝑤,𝑏

1

2
∥ 𝑤 ∥2 s.t.𝑦𝑖(𝑤

⊤𝑥𝑖 + 𝑏) ≥ 1 

 

where 𝑦𝑖 ∈ {−1,+1}. 
Step 2: Soft-margin (real clinical data not perfectly separable) 

Introduce slack 𝜉𝑖 ≥ 0: 

min⁡
𝑤,𝑏,𝜉

1

2
∥ 𝑤 ∥2+ 𝐶  𝜉𝑖

𝑛

𝑖=1

 

 

subject to 

𝑦𝑖(𝑤
⊤𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖 , 𝜉𝑖 ≥ 0 

 

Step 3: Hinge-loss form (same objective, unconstrained) 

This is equivalent to: 

min⁡
𝑤,𝑏

1

2
∥ 𝑤 ∥2+ 𝐶  max⁡

𝑛

𝑖=1

 0,1 − 𝑦𝑖(𝑤
⊤𝑥𝑖 + 𝑏)  

 

4.2. Feature Engineering and Representation Learning 

Feature engineering remains a critical step in building ML-based prediction models despite the hype 

surrounding the capabilities of deep neural networks. Traditional machine learning algorithms such as SVM and 

XGBoost typically require expert-built features for optimal performance. For decision tree models particularly, 

carefully constructed features can be instrumental in avoiding the risk of overfitting. Domain expertise is 

invaluable for generating such features that can maximize predictive performance, produce easily interpretable 

models, and accelerate the search process in hyperparameter tuning. Feature studio platforms that combine high-

quality evidence with the experience of data scientists and clinicians can facilitate and speed up the construction 

of relevant features based on lab tests and imaging studies, among others. 

Deep learning, however, has triggered a radical shift in how data representation is learned and if feature 

engineering is even required. The success of deep learning methods, especially for unstructured data ranging 

from text to images to video, has enabled model performance to increasingly depend on the volume of data as 

opposed to the quality of features used. With sufficient amounts of curated training data, DNNs can learn low-, 

mid-, and high-level features automatically and implicitly while generalizing well on unseen data by virtue of 

regularization techniques that prevent overfitting. Moreover, DNNs in the form of CNNs have superior 

capabilities for non-Euclidean structured data such as those generated in graph-based settings as well as for 

images. When pretrained on large annotated datasets and subsequently fine-tuned on task-specific datasets, 

DNN architectures can serve as general-purpose function-approximators. In the context of clinical risk 

prediction from tabular data, representation learning through fixed, learned, or transferrable embeddings can 

also assist in shortening the search for optimal features with reduced data. 
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5. Evaluation and Regulatory Considerations 

Performance Metrics for Clinical Risk Models. Apart from accuracy, likelihood, precision, and recall, ML 

methods focus on metrics such as sensitivity, specificity, area under the receiver operating characteristic curve 

(AUROC), area under the precision-recall curve (AUPRC), Brier score, and net reclassification improvement 

index (NRI). Sensitivity indicates the probability of correctly predicting a beneficial clinical outcome, whereas 

specificity measures the probability of correctly predicting an adverse clinical event. The AUROC provides a 

means of assessing the predictive performance of models that output probabilities rather than binary 

classifications. The Brier score is particularly useful for assessment of probabilistic predictions of binary 

outcomes; it measures the mean squared difference between predicted probabilities and the eventual outcomes. 

The NRI enables researchers to quantify the extent to which a new risk instrument provides improved clinical 

predictions compared to an older risk score. 

External Validation and Transportability. Compared with classical statistical models, ML algorithms are often 

perceived to have greater flexibility in predicting outcomes across diverse patient cohorts. Characteristic 

heterogeneity in the patient population—e.g., age, ethnic background, sex, comorbidities, socioeconomic 

status—has been shown in clinical practice to affect the likelihood of patient responses to specific treatments. It 

is therefore clinical best practice to first evaluate model performance in the primary cohort before then 

validating predictions in external independent cohorts of patients. External validation, transferability, and 

transportability across cohorts from different geographies, health-care settings, and populations are critical areas 

of focus for more advanced predictive ML algorithms. Transportability is the degree to which a risk prediction 

function developed in one cohort can be applied in other cohorts without reestimation of the coefficients. 

Broadly speaking, differences in the distributions of significant risk model predictors between the model 

derivation cohort and the population under consideration should be minimal. 

 

5.1. Performance Metrics for Clinical Risk Models   

Risk models are evaluated with a range of performance metrics that reflect specific clinical and user 

requirements. Through these metrics, model developers, regulatory agencies, and end users can assess a model’s 

performance and see whether it aligns with its intended purpose or use. Standard metrics in predictive analytics, 

including area under the receiver operating characteristic curve (AUC) and area under the precision-recall curve 

(AUPRC), summarize the predictive skill of the model under both class-imbalance and class-balance settings. 

AUC is a misleading metric when the positive class is very rare, whereas AUPRC is not. Thus, AUPRC is 

preferred, though prediction-oriented metrics such as accuracy, F1 score, Matthew’s correlation coefficient, and 

Brier score, which assess predictive skill on the designated operating point, are often favored in clinical 

applications. 

Bennett and Dorr provide a helpful overview of the most relevant evaluation metrics for risk models and their 

relative merits. These can be categorized into model fit and discrimination, calibration, or clinical utility. Fit 

metrics such as Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) indicate how 

well the model approximates the training data and take into account both goodness of fit and model complexity. 

Discrimination measures such as get C-statistic, AUC, and gloss provide a single number that conveys how well 

the model distinguishes between subjects who experience the event and those who do not. Calibration measures 

assess the degree of concordance between predicted probabilities and observed probabilities, whereas clinical 

utility metrics gauging whether the model can improve clinical outcomes compared to existing alternatives. 

 

 
Fig 3: Performance Metrics for Clinical Risk Models 
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5.2. External Validation and Transportability 

As highlighted, assessing a clinical risk model’s predictive performance (typically, AUC or ROC) on an 

independent external dataset is critical to bolster evidentiary support of its utility. The goal of recognizing the 

evaluation of the model on an independent external dataset with a sample size large enough to offer a 

meaningful test is noted. Beyond size, adequate definitional concordance of the external validation set with the 

derivation dataset is also essential. Additionally, the external validation cohort must remain independent from 

the derivation cohort with respect to individual patient membership. Transportability quantifies the performance 

of a risk model on population subgroups not included in the derivation dataset. For instance, a cardiovascular 

risk model may exhibit significant predictive performance within, say, South Asian populations or older 

individuals — populations not included in the original model's derivation but reported on in a smaller-scale 

independent study. 

In domains such as cardiovascular risk prediction, routine examination of transportability has prompted 

numerous models to appear explicitly oriented for South Asian populations, given low clinical adoption of 

Western risk factors in such high-risk cohorts. When a risk score's transport ability fails validation, variance in 

the predictive ability of its constituent risk factors has often been implicated, justifying alternative visual 

approaches (such as cover plots) to illuminate precise factors driving the score's predictive power. Relying on a 

model's predicted probabilities underscores uncertainty and may exacerbate poor calibration, thereby muddying 

the signal of an external validation or transportability assessment. Difficulty in evaluating classifier-based 

models across stratifications of sample size, follow-up duration, and data set characteristics remains a pervasive 

limitation, coupled with scant dedicated scholarship on the transportability of nonstatistical machine-learning 

models. 

 

Equation 4: PCA (PC1, PC2) used before ML 

Step 1: Covariance matrix 

𝑆 =
1

𝑛 − 1
𝑋⊤𝑋 

 

Step 2: Eigen-decomposition 

𝑆𝑣𝑘 = 𝜆𝑘𝑣𝑘  

 

where 𝑣𝑘are principal directions, ordered 𝜆1 ≥ 𝜆2 ≥ ⋯. 

Step 3: Principal component scores 

PC1 scores: 

PC1 = 𝑋𝑣1 

 

PC2 scores: 

PC2 = 𝑋𝑣2 

 

6. Applications in Clinical Domains 

Research in the domain of clinical prediction is naturally inclined toward cardiovascular disease risk typing, 

with efforts often focusing on either improved prediction using traditional risk factors or risk grouping based on 

blood biomarker testing. A meta-analysis of existing scores for coronary heart disease prediction using 

established clinical risk factors found that 47 % of models did not undergo external validation. More recent 

studies on statistical outcomes of such scores demonstrate a similar tendency toward internal validation or, in 

the case of machine learning, the absence of validation altogether. Consequently, the rules emerging from 

classical clinical risk score applications have become rather automated, similar to the plethora of new models for 

10-year Framingham risk score equivalents, with the addition of novel predictors such as family history or 

hsCRP level. To that extent, the digital tool kit available to physicians is converging toward applicability, 

succinctness, and universal acceptance. 

The oncology domain has seen mature and systematic application of both radiomic (i.e., ML across pre-existing 

image features) and pathomic (ML across pre-existing histopathological features) layer techniques, particularly 

in predicting recurrence risk after treatment with a curative aim and in the imaging of lung and breast cancer. 

Formal attempts to integrate multi-modal data in such models remain limited even in renowned datasets such as 

The Cancer Genome Atlas, primarily owing to the fact that most data types do not possess the spatial continuity 

or sparsity of image data; yet if properly implemented, the concept of data fusion holds promise for cancer care. 

Despite being the worst disease for prediction in clinical decision support systems, infectious disease prediction 

is also the domain where the greatest emphasis on precision risk typing exists, largely because the type of data 

available (e.g., travel flows) easily accommodates predictive mapping. 
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6.1. Cardiovascular Risk Prediction 

Human vascular disease accounts for approximately a third of global mortality. Coronary heart disease, strokes, 

peripheral vascular disease, and aortic aneurysms often share common pathophysiological mechanisms and are 

discussed together under the heading of cardiovascular disease (CVD). Simple CVD risk models based on 

friality points such as age, blood pressure, smoking status, diabetes, and cholesterol levels, combined with a 

limited set of additional risk factors, such as family history and race, can predict either fatal or non-fatal CVD 

events reasonably well over 10 years. However, a more precise determination of absolute risk in patients who 

have not had a CVD event before is clinically valuable and may improve the impact of risk-reducing therapy. 

In the Framingham Heart Study, ML methods were used to model the probability of developing coronary heart 

disease in a population of participants without diagnosis at baseline. The same ML models were trained for two 

time horizons (2 and 4 years) to explore the trade-off between predictive performance and model transparency. 

The five methods were used in combination (predicting with each method separately and selecting the model 

with lowest validation score provided) and in ensembles of two, three, or four models. The C4.5 classification 

tree generated the best combination of predictive discrimination and interpretability, resulting in a predictor 

based on a fewer number of risk factors than the traditional Framingham Heart Study point calculator. 

Machine Learning–based Cardiovascular Disease Patient Open Data coupled with ML algorithms demonstrated 

more accurate predictive models than other linear algorithms in the identification of high-risk patients with 

diseases complicated by CVD. Survival analysis identified three significant factors affecting the survival of 

patients with coronary heart disease and associated chronic depressive symptoms: history of previous 

myocardial infarction, cardiac surgery, and ischemic stroke. 

 

Equation 5: Evaluation metrics (Sensitivity, Specificity, AUROC, AUPRC, Brier, etc.) 

Given probability scores 𝑝 𝑖 , define 𝑦 𝑖 = 𝟙[𝑝 𝑖 ≥ 𝑡]. 
 TP: predicted 1, true 1 

 FP: predicted 1, true 0 

 TN: predicted 0, true 0 

 FN: predicted 0, true 1 

Sensitivity / Recall / TPR 

Sensitivity = 𝑃(𝑦 = 1 ∣ 𝑦 = 1) =
TP

TP+ FN
 

 

Specificity / TNR 

Specificity = 𝑃(𝑦 = 0 ∣ 𝑦 = 0) =
TN

TN+ FP
 

 

FPR 

FPR = 1 − Specificity =
FP

FP + TN
 

 

Vary the threshold 𝑡from 1 down to 0. 

At each 𝑡, compute  FPR(𝑡),TPR(𝑡) . 

Plot TPR vs FPR. 

AUROC is the area under that curve: 

AUROC =  TPR(FPR) 𝑑(FPR)
1

0

 

 

In practice (discrete points), trapezoidal rule: 

AUROC ≈  (

𝑚−1

𝑘=1

FPR𝑘+1 − FPR𝑘) ⋅
TPR𝑘+1 + TPR𝑘

2
 

 

At each threshold 𝑡: 

Precision(𝑡) =
TP

TP+ FP
,Recall(𝑡) =

TP

TP+ FN
 

 

Plot Precision vs Recall. 

AUPRC: 

AUPRC =  Precision(Recall) 𝑑(Recall)
1

0
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6.2. Oncology and Precision Medicine  

The second area of clinical prediction over the past twenty years that has received ample attention is oncology, 

with major focus on cancer detection and therapeutic delivery methods. Machine learning methods built on 

pathology images, e.g., convolutional neural networks, are being used widely for detection, while risk models at 

the patient level are needed for treatment selection. For any cancer type, besides stage, other individual-specific 

risk indicators are needed for best treatment choice. Similar to cardiovascular applications, myriad such models 

have now emerged. Given the concern about induction of bias or treatment-theft in clinical risk models, 

prediction within stratification of patient sub-populations, based on a conventionally accepted clinical indicator, 

remains the most trusted approach for the day, even if that conventional predictor alone is insufficient for 

treatment selection. 

Fairness of a proposed risk scoring model in the prediction of an oncological end-point outside the model-

building cohort, represented by arguably the most important clinical development of the past two decades, also 

provides insight within this area. The recent rapid strides towards individualized patient-specific therapy in 

oncological domains, amply justified by differences in inherent and therapeutic responses among ethnic/racial 

groups, provide crucial timely domain-specific application-area differentiation. Recent model developments 

have now provided black-white routes or pathways to a large number of end-points in oncological scoring and 

therapy-determining contexts. 

 

7. Challenges, Limitations, and Future Directions 

Data-driven health-care solutions to improve health outcome and quality of life for individuals with wide socio-

stratification range have become a trend. Yet, models built on only selected or isolated population constitute 

potential risks. The consequences of algorithmic bias due to disproportionate representation of certain 

demographic groups in health-care models may undermine their real-world interchangeability and 

generalizability. The awareness of fairness and equity across diverse populations continues. Moreover, rare-

event prediction and extreme high-dimensional features (e.g., Oncology) may require special attention to model 

robustness against overfitting. 

Whereas, Data reliability and compatibility are critical for the development of predictive algorithms. Lack of 

transportability has been identified as a main challenge toward ensuring model adoption across various clinical 

environments and increased real clinical value. Beyond standard external model validation for individual or 

multicentric studies, frameworks based on extreme validation set and hitters’ hypothesis have been proposed. 

Building on these concerns, contemporary research increasingly emphasizes the need for methodological 

frameworks that explicitly integrate fairness, robustness, and transportability into the lifecycle of data-driven 

health-care models. Rather than relying solely on conventional development pipelines optimized for overall 

accuracy, emerging approaches advocate for stratified performance assessment across demographic and clinical 

subgroups, incorporation of bias-mitigation strategies during training, and systematic stress-testing under 

distributional shifts. In parallel, advances in rare-event modeling and high-dimensional learning highlight the 

importance of regularization, representation learning, and uncertainty-aware methods to prevent overfitting and 

preserve clinical interpretability, particularly in complex domains such as oncology. Complementing standard 

external validation, extreme validation sets and hitters’ hypothesis–driven frameworks offer promising avenues 

to probe model behavior in edge-case scenarios and heterogeneous settings, thereby providing deeper insight 

into failure modes and generalizability. Collectively, these efforts underscore a paradigm shift from building 

merely performant models toward developing trustworthy, equitable, and transportable predictive systems 

capable of delivering consistent real-world value across diverse clinical environments and populations. 

 

 
Fig 4: Challenges, Limitations, and Future Directions 
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7.1. Data Bias, Fairness, and Equity  

Significant advances in data collection have afforded unparalleled opportunities for personalized and precision 

medicine through extensive and diverse population-based healthcare data. Yet, the high-dimensional datasets 

employed in Big Data analysis may inherently lead to data bias. The size of the training cohort may act as a 

double-edged sword: on the one hand, a large cohort may contain more outliers, and on the other hand, a cohort 

that is orders of magnitude larger than the test cohort may not ensure generalization to the target population. 

While ML models have shown promise for improving prediction accuracy, they may inadvertently learn biases 

inadvertently encoded into the data, leading to questions of fairness and equity of risk prediction models: which 

groups of patients would be disadvantaged? Would the model be interpretable for high-stakes medical decision-

making? 

Unbiased representation of specific subpopulations, such as racial minorities and patients of a certain sex, in 

both training and test cohorts is essential for equitable clinical use. Some research has demonstrated that fair 

decision boundaries with respect to sensitive attributes can be learned, while other studies have investigated 

fairness-aware learning. Most of these approaches incorporate fairness constraints directly into the learning 

process via adversarial methods, discern performance across groups during model selection, and explicitly 

reduce the information about sensitive attributes in the features during representation learning. Statistical 

techniques have also been proposed to decrease data or decision bias while maintaining accuracy. 

 

7.2. Robustness, Generalizability, and Reproducibility 

The risk of overfitting with machine learning (ML) is a concern shared across many data domains. Yet in 

healthcare, prediction models trained on large amounts of patients and events often generalize well to external or 

new clinical settings, even in the absence of explicit regularization. That said, the transferability of ML models 

remains an open question, particularly when applied to subpopulations or healthcare systems with significantly 

different case mix, including socio-economic features. In such circumstances, demographic, economic, or ethnic 

imbalances may lead to disparities in care, such as in heart failure prediction, where deprivation indices were 

shown to be predictive in men but not in women. 

Although cross-site validation is always preferable, a lack of external cohorts from independent sources can 

hinder assessment of a model's transportability. Nevertheless, ML can often help garner insights concerning 

distributional differences. Models used to assess risk in electrocardiograms, for instance, were shown to be 

incompletely invariant across age. Population-stratified models, defined using supervised clustering, provided 

both improvements to accuracy and increased interpretability, delineating clinically-relevant groups of ECG 

traces. 

The growing popularity of autoML systems, while practical for exploratory endeavors, can compound issues of 

generalizability. Models generated by these platforms can be complex, feature-rich, and often lack 

interpretability or the capacity to convey clear clinical information. Moreover, when frequently adopted by non-

experts simply to gain access to publishing venues, numerous papers may unwittingly instantiate a similar 

methodology to the same clinical risk or progression problem. In such circumstances, translational utility often 

becomes less about answering a specific question and more about simply obtaining yet another model for a 

particular disease. 

 

8. CONCLUSION 

Exponential improvements in digital storage, computational power, and connected devices have paved the way 

for the Big Data revolution. Healthcare, a cornerstone of modern economies, generates vast amounts of data in 

electronic Charlotte models, payers, pharmacies, clinics, and hospitals recording information about patients, test 

results, treatments, and costs. Although Big Data volumes have increased exponentially and their breadth has 

widened, they are still of limited use for clinical care, clinical risk prediction, and clinical decision support 

because predictive models are generally developed by a small number of specialized centers using traditional 

population-level datasets. It is essential to establish frameworks that harness Big Data–enabled artificial 

intelligence to make clinically applicable predictions more widely. 

Risk models predict probabilities of onset of diseases or events in predetermined time horizons and are typically 

built using supervised statistical methods and represented in the form of scores or web portals accessible to 

medical professionals. Model performance is assessed using metrics adapted from information retrieval, and 

conclusions focus on internal, out-of-sample validation because real-word litmus tests are rare. Recent advances 

have made it possible to assess risk scoring in the Big Data context using modern ML methods, beginning with 

the construction of a framework that supports the construction of risk models from the ingesting, integrating, 

and storage of Big Data through representation learning and feature engineering. 

 

8.1. Future Directions 

With widespread Big Data availability, the growth of advanced computing architectures operating with the 

cloud, the maturation of ML methods and statistical frameworks appropriate for High-Dimensional Data 
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Problems, and the introduction of new paradigms enabling the crowd-sourcing of knowledge representation and 

modeling, Machine Learning and especially Deep Learning approaches have gained ground in many application 

areas. These advantages make them more promising for the prediction of difficult to model clinical events. 

Nevertheless, important challenges must still be addressed before this potential can be fully achieved. 

Healthcare decision-making should ultimately aim to provide health services to patients equitably and fairly 

while reducing health deprivations and disparities across population groupings. Empirical evidence suggests that 

unequal healthcare treatment and poorer clinical outcomes can be attributed to patient grouping based on some 

sensitive attributes such as sex, sexual identity, racial identity—especially in the USA, socioeconomic attributes, 

or prevalent clinical conditions among others. 

Recent ML literature supports the claim that these same attributes can induce data biases that impact model 

fairness. Demographic considerations must therefore complement traditional performance evaluation measures. 

Decision support based on ML prediction of ordinal or categorical outcomes often leads clinicians and care-

takers to classifying subjects in a single fragile class. Transportability of prediction models is often poor, with a 

model trained over one population not being able to yield reliable predictions on another, independently 

sampled, population and such generalization ability is not always easy to estimate. These issues are further 

aggravated by the use of external APIs and the creation of proprietary data lakes by tech giants. Addressing 

these concerns and presenting some recent solutions opens avenues for future research able to contribute 

towards a deeper understanding of ML prediction at large scale in medicine. 
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