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ABSTRACT

Healthcare is a path-breaking field for big data. By combining electronic medical record data with omics data
(genomics, proteomics, metabolomics, etc.), lifestyle information (e.g., smoking, drinking, diet, and exercise),
social determinants of health, and relevant data from wearable devices, a diverse array of clinical and biological
predictive models can be constructed. In particular, the application of machine-learning (ML) methods for
clinical risk-prediction modeling has gained impressive momentum in recent years, amassing a wealth of
reference literature. Unlike traditional statistical approaches commonly utilized in clinical applications, ML
techniques have the potential to simultaneously leverage high-dimensional, heterogeneous data.

This contribution reviews multiple important aspects of risk prediction using big data and ML methods,
including data-sources, framework, performance metrics, and regulation. Relevant clinical applications span
almost every area, including cardiovascular medicine, oncology, infectious diseases, nephrology, rheumatology,
and psychiatry. Although numerous ML-based risk-scoring systems with impressive performance are found in
the literature, external validation and transportability remain critical challenges that merit further exploration.

Keywords :Combining PC-1; PC-2 with ML Ridge regression; SVM Linear; lasso; AUC-ROC curve; area
under the precision-recall; maximal accuracy Ya.Yu. et al.; the goodness of fit was evaluated and an internal;
external validation of the risk score Risk factors; sensitive; specific; especially; AUC-ROC 3829
clinical/biobanked; 110706 clinically well-characterized; 7400 clinical; 165237 individuals.

1. INTRODUCTION

Big data, involving high-velocity, high-volume, and high-variety data feeds, presents multiple challenges.
However, these features confer the ability to comprehend dynamic processes at various resolutions, enabling the
extraction of critical and useful patterns. Utilizing these properties requires a multi-disciplinary effort across
several engineering disciplines and presents challenges in automation. New data sources and consumer-facing
applications, such as smart homes, connected vehicles, and mobile communications, are constantly emerging
and can influence industry practice and business models. The health domain, where a large amount of data is
generated every day, and massive amounts of data from heterogeneous sources are available, provides one of the
best platforms for validating big data theories and techniques. Healthcare covers smart living services,
personalised medical services, and ubiquitous health monitoring.

In recent years, the importance of clinical risk prediction for individual patients has been recognised.
Comprehensive data from different sources can support trustworthy machine learning frameworks and yield
efficient predictive models for individual patients. High-dimensional risk-scoring systems do not provide
sufficient coverage and stability for most variables in high-dimensional space; combining supervised learning
methods and risk scoring can alleviate these two problems. The introduction of big-data-driven machine
learning frameworks is a promising direction for building personalised prediction models.

1.1. Background and Significance

The clinical and public health importance of accurate risk prediction is widely acknowledged; intentionally or
unintentionally, clinicians constantly assess patients' risk of symptoms or disease. When clinicians' intuitive
assessments are not quantifiable, predictive models developed with large datasets of patients can help clinicians
estimate the joint effects of multiple patient characteristics. Traditional statistical risk models, such as logistic
regression, can overcome these limitations for a target population by providing continuous risk score estimates.
However, the increasing availability of self-reported, continuous, and high-volume healthcare data from
different sources has made the development of superficially more advanced machine-decision support models
particularly attractive. Machine learning applies to a broader array of predictive problems than traditional
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statistical models and can discover common structures in the data without making strong assumptions, leading
to increased prediction accuracy.

In addition, there is a growing consensus that traditional statistical analysis methods should be clearly
differentiated from modern machine learning methods. Although the term "machine learning" remains poorly
defined, it is currently commonly used in situations in which prediction accuracy is the primary goal of model
training or selection. In medicine, a reasonable interpretation of this viewpoint is that, when prediction is the
primary goal, prediction accuracy should be measured with explicitly held-out test data not used in model
training or selection. In consequence, risk scoring based on supervised machine learning approaches enables
building continuous risk-scoring functions for predicting future events of interest. A role in linking Big Data and
clinical risk prediction using supervised machine learning techniques is developed by presenting frameworks for
Big Data ingestion, preparation, and risk-score generation, while discussing the connections between Big Data
and the clinical domains of cardiovascular disease and cancer.

MACHINE LEARNING {
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—

Fig 1: Big Data—Driven Machine Learning Frameworks

1.2. Research design

A comprehensive review of clinical risk prediction methodologies, relying on supervised machine learning, is
presented. The focus is on a dedicated type-I1l framework that utilizes risk scores estimators, which can be
valuable for patients, physicians, healthcare organizations, and insurers. Such models predict risks of occurrence
for primary outcomes as well as risks of developing secondary outcomes, providing a complete clinical risk
profile. Typical applications include predicting concurrent cardiovascular disease (CVD) and Type 2 diabetes,
the combined risk of coronary heart disease and breast cancer, and the simultaneous risk of clinical CVD and
cancer.

Big data infrastructures for clinical prediction powered by supervised machine learning are reviewed,
synthesizing existing work and guiding future endeavors. First, state-of-the-art experimental pipelines that
collect, harmonize, and curate data from a variety of health information systems are examined, creating
integrated databases containing large volumes of high-dimensional patient information. Next, the emphasis
shifts to data representation, exploring techniques focused on feature engineering and automatic feature learning
from raw data. Finally, the discussion covers performance evaluation of the resulting models, good clinical
practice of machine learning, separation between model development, evaluation, and application, and
considerations regarding the transportability of predictive models.

2. Foundations of Big Data in Healthcare

Volume, variety, and velocity describe the three dimensions of Big Data. Health information must also satisfy
requirements for public and private governance. Regulatory frameworks guarantee the adequate processing of
sensitive data, thus enabling clinical research. Technological evolution has allowed the integration of multiple
data sources and types in large databases. These sources include the electronic health record, which contains
information on patient clinical history, and wearable devices, which collect data on physical activities, vital
signs, and the external environment. Integration of such data enables the assessment and prediction of health and
disease through classical statistical techniques and modern machine-learning (ML) approaches.
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The integration of these two sources leads to prediction models that combine clinical and behavioral
characteristics for cardiovascular disease (CVD) risk stratification. Such models predict the probability of CVD
events on the basis of clinical features. Previous studies estimated the prognostic value of combining supervised
clinical risk scores with interim information on lifestyle changes derived from unconstrained 7-day pedometer
recordings. The models explored the effect of counseling-based interventions on CVD risk at 1 year. The results
demonstrated the potential of additionally including bidirectional-individual-centric information in the
prediction of disease. Furthermore, they proposed an innovative ML architecture for the estimation of risk scales
in the middle-term temporal range.

Equation 1: Logistic regression (classic risk score baseline)
Step 1: Model probability with the sigmoid
Let the linear predictor be

7 =P+ BTX;

Map it to a probability:

Pi=P(Yi=1|Xi)=U(Zi)=m

Step 2: Bernoulli likelihood
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Step 3: Log-likelihood (easier to optimize)

((B) = logi(B) = ) [¥;logib, + (1 - ¥)logit — p))]
i=1

Step 4: Negative log-likelihood = cross-entropy loss
Minimizing —£(f)is equivalent to minimizing:
n

2.1. Data Sources and Data Types

To realize the vision of empowering healthcare delivery through data and evidence, it is crucial to derive
actionable insights, such as clinical risk models, from the variety of structured and unstructured data generated
from multiple data sources at all levels of healthcare delivery. Since all digital services, electronic health
records, and sensors generate an unprecedented quantity of user-centered data on patients, caregivers, and
clinicians at different levels of healthcare delivery, the growing volume of these data offers an opportunity to
develop reliable, robust, and trustworthy Big Data—driven models for clinical risk prediction. A plethora of new
healthcare data sources exist, but three major data categories—those containing patient-centered, caregiver-
centered, and clinician-centered data—all hold the potential to derive predictions and insights about clinical risk.
The patient-centered data are related to disease, treatment, and post-treatment outcomes. Caregivers are
currently involved in helping patients manage chronic diseases more effectively, while clinician-centered data
are mainly used for training, skill assessment, and surgical risk assessment.

Apart from traditional healthcare data sources consisting of structured data from patients and health records,
new unstructured and semi-structured data sources are being generated continuously. Unstructured and semi-
structured data can be mined for information to help make better clinical decisions. These include social media
data (tweets, posts, articles, and blogs) that share patient experiences, reviews of hospitals, doctor ratings, news
from health organizations, etc.; data from status updates; patient forums and communities; and patient and
family blogs that discuss and report on the experience of a specific disease such as cancer, diabetes, or a specific
mode of treatment such as dialysis. These unconventional data sources can be harnessed for modeling the
correlation between sentiment and health (Saha & Shankar, 2020), predicting the volume of flu infection (Yang
& Wu, 2016), predicting the severity of skin diseases (Thiyagarajan &Veloo, 2016), etc. Thus, new healthcare
data sources complement existing clinical data for different applications across various domains.
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2.2. Data Quality, Governance, and Privacy

Healthcare data are inherently complex because they may originate from multiple stakeholders and entities
within a healthcare system. To ensure that data are conducive to proper analysis, they must be of high quality.
Poor data quality can arise from incomplete, missing, or inconsistent data. An example of this is the record of a
pregnant single woman who may have subsequently become divorced during the observation window and then
have secondary diabetes. Without supporting multiparous cases, data with missing values can create difficulty in
learning machine learning models, especially decision tree models that can handle missing values directly.
Model performance in such cases can also be poor. Therefore, the missing value imputation process should be
carefully designed and applied such that the characteristics of the original data can be preserved.

Proper data governance mechanisms should be put in place to monitor the accessibility of data in a healthcare
system in accordance with legal and regulatory requirements. For Big Data analysis in healthcare, the
establishment of a healthcare data commons can be considered. Such a data commons can then serve as a
research and collaboration platform for transnational Big-Data-driven research. Because health data also reflect
sensitive information about each individual's physical condition, errors in the prediction model may lead to the
disclosure of sensitive ground truth labels. A robust defence mechanism against data leakage should therefore be
carefully designed and deployed.

Proper data governance mechanisms are essential to ensure that data accessibility within healthcare systems is
continuously monitored and aligned with applicable legal, ethical, and regulatory requirements. As Big Data
analytics becomes increasingly central to healthcare innovation, the establishment of a healthcare data commons
offers a promising approach to facilitate secure, standardized, and collaborative data sharing across institutions
and national boundaries. Such a commons can function as a trusted research infrastructure that promotes
transnational Big-Data-driven studies while enforcing clear policies on data stewardship, accountability, and
usage rights. However, given that health data inherently contain highly sensitive information about individuals’
physical and mental conditions, even indirect disclosures—such as those arising from model inference errors or
adversarial attacks—can expose confidential ground truth labels. Consequently, robust defense mechanisms
against data leakage must be carefully designed and integrated throughout the data lifecycle, including strong
access controls, privacy-preserving analytics, encryption, auditing, and continuous risk assessment. Together,
these measures help balance the dual imperatives of enabling data-driven discovery and safeguarding patient
privacy.

Calibration plot (synthetic example)
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3. Machine Learning Methods for Clinical Risk Prediction

Supervised learning methods, using a variety of structured data, such as demographic information along with lab
results and vital parameters measured in routine hospital visits, are appropriate for just-in-time clinical risk
prediction. Special considerations exist for applications using health-care data, where the model focus is
measuring the risk of future adverse clinical events, such as 10-year cardiovascular risk-estimation models or
cancer prediction models that aim to determine the predicted higher-risk population incidence within a timespan
of 1-3 years. Risk scoring is the natural model output in either case, and ML methods provide a principled way
to learn from recent data and adapt to changing patterns in the underlying population and environment.

While established clinical risk-scoring systems typically depend on simple logistic regression fitted on curated
data sets reflecting expert opinions, Machine Learning (ML) models can use a larger set of candidate predictors,
employ non-linear interactions between predictors, and use non-parametric assumptions. These differences can
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lead to improved predictive accuracy, and research has shown that more complex methods can help identify
latent subgroups. Nevertheless, the scoring ability is a special case of supervised classification in ML, and
techniques designed for predicting binary outcomes remain applicable even in the presence of an underlying
severity score. Classes in supervised ML, including decision trees, support vector machines, random forests,
gradient boosting, or neural networks, are applicable in practice.

Traditional clinical risk-scoring systems are commonly built using logistic regression models applied to
carefully curated datasets that reflect established clinical knowledge and expert judgment. While these
approaches offer interpretability and transparency, they are often limited to a relatively small set of predefined
predictors and assume linear relationships between variables. In contrast, Machine Learning (ML) models can
incorporate a much broader range of candidate predictors, capture complex non-linear interactions, and operate
under fewer parametric assumptions. These capabilities frequently translate into improved predictive
performance and enable the discovery of latent patient subgroups that may not be apparent through conventional
modeling techniques. Importantly, clinical risk scoring can be viewed as a specific instance of supervised
classification, meaning that standard ML methods designed for binary outcome prediction remain applicable
even when an underlying severity score exists. Consequently, a wide range of supervised learning algorithms—
including decision trees, support vector machines, random forests, gradient boosting methods, and neural
networks—can be effectively implemented in clinical practice to enhance predictive accuracy and support
evidence-based decision-making.

MACHINE LEARNING METHODS CLINICAL RISK PREDICTION

T

.
“ BIG DATA-DRIVEN
MACHINE LEARNING
FRAMEWORKS

Fig 2: Machine Learning Methods for Clinical Risk Prediction

3.1. Traditional Statistical Approaches versus Modern ML

Many applications of predictive analytics for healthcare and health system data rely primarily on traditional
regression-based statistical methods, including linear regression, logistic regression, Poisson regression, and
numerous extensions of these general themes. Generally, the adoption of more modern machine-learning
approaches has been limited. However, much of the potential improvement gain from large-scale clinical data
for easing prediction posited in the literature hinges upon operating these data through state-of-the-art predictive
machinery. For many clinical prediction tasks, the features known to be clinically important are available in the
record and can be reliably represented; the payoff from traditional elegance is often outweighed by avoiding
predictively irrelevant assumptions. Therefore, machine-learning methods are particularly well suited to these
tasks. Moreover, for health systems without well-characterized prior risk models, even the direct data from the
clinical record itself can allow the construction of new, state-of-the-art predictive strategies by employing the
full set of features present in the record-systems infrastructure.

The predictive faculties of contemporary supervised learning remain tightly connected to the traditional risk-
scoring models, but the developments of big-data strategies draw upon machine-learning tools requiring less
algorithmic structure. The elements of risk-scoring models that relate to feature selection, exclusion, and
transformation can be immensely valuable guides during the model-building process. However, once the
traditionally important features are either selected or represented, modern predictive machinery can be applied
directly to the larger data without imposing the higher-level assumption demands of logistic regression. The
traditional assumption of independence among the risk factors in predicting extreme outcomes need not be held,
nor is it necessary to balance the errors across the outcome classes. The extension of machine-learning
developments into the future allows for the effects of ignorance of external causation to be learned directly from
the relationship among the record features in the full data set.
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3.2. Supervised Learning and Risk Scoring

Machine learning has a much broader scope than traditional statistical approaches, including both supervised
and unsupervised learning methods. Supervised learning involves several tasks, including classification and
regression, which aim to predict a target variable Y given predictor variables X . For clinical risk scoring, the
most relevant methods can be classified as regression tasks, where the outcome variable Y is a continuous score
indicating the probability of entering a risk state. During the development of these models, an event indicator is
often generated to express whether the patient has entered the risk state that needs to be predicted (Y = 1) or not
(Y =0), considering a specific time horizon.

This event indicator is then used in supervised machine learning methods to learn a function from X to the event
indicator, usually expressed as f(X) = Y. Various performance evaluations can be used to assess the quality of
this learned function, which may also be integrated into the risk score. When the performance is satisfactory, the
risk score is applied to other upcoming cohorts not used in building the model to classify them as entering or not
entering risk states over a future time period. Consider a group of (external) validation cohorts that have not
been used in building the model; the output from the index model is usually termed an external validation.
Alternatively, the prediction task can be termed transportability, where other cohorts are of interest for external
testing.

Equation 2: Ridge and Lasso (regularized logistic regression)
Ridge (L2) penalty

Add A || B lI5to reduce overfitting:
n p

i=1 j=1

Lasso (L1) penalty
Promotes sparsity (feature selection):

n

p
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4. Frameworks for Big Data-Driven Clinical Prediction

Frameworks for Big Data—Driven Clinical Prediction

Designing, developing, and deploying accurate clinical risk-prediction models from heterogeneous, high-
dimensional, and fast data sources often requires the use of modern Big Data technologies and tools. The
framework presented comprises five critical components that together enable the building of ML-based clinical
risk models. These elements track the flow of data from ingestion to modeling and can be logically decoupled
into separate modules, each using different technologies, tools, and expertise.

The first component deals with data ingestion, integration, and storage: collecting data from both static and
streaming data sources; cleaning, integrating, and fusing the data; and securely storing integrated patient data for
later access by other pipeline modules. The second component focuses on feature engineering and representation
learning: automatically generating high-quality predictive features based on raw patient data. The third
component specializes in training ML models, which may involve additional tasks such as hyperparameter
tuning, model selection, and optimizing feature subsets for model training.

4.1. Data Ingestion, Integration, and Storage

The architecture of a typical Big Data—driven ML framework for clinical risk prediction follows a modular and
layered design. At the bottom layer, the data ingestion, integration, and storage module receives digital
healthcare datasets from multiple heterogeneous sources and in various formats. Broadly, the data ingestion
module often executes three main operations: (i) collection, (ii) integration, and (iii) storage.

First, data are typically collected from unique, independent data sources (e.g., healthcare provider systems and
wearable devices) that may generate one or multiple data types (e.g., EHRs, laboratory tests, genomic
sequencing, and imaging). These data sources often operate independently and provide data for only a small
subset of patients and at discrete time points. Since patients frequently consult multiple healthcare providers, the
systems of these independent providers need to interoperate for obtaining the patients' complete data records. To
that end, the data ingestion module usually employs technologies such as Fast Healthcare Interoperability
Resources (FHIR) and HL7 that ensure interoperability among disparate sources of healthcare data and the
sharing of patients' data among different organizations and systems to obtain a holistic view of their healthcare
risk.
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Equation 3: Linear SVM (for “SVM Linear”)
Step 1: Hard-margin idea (separable)
Find a hyperplane w'x + b = Omaximizing margin:

where y; € {—1, +1}.
Step 2: Soft-margin (real clinical data not perfectly separable)
Introduce slack &; > 0:

i Ilwl*+C En
S .
whg 2 Y ,151
=

subject to
yiwTx; +b) 21-¢§,5 20

Step 3: Hinge-loss form (same objective, unconstrained)
This is equivalent to:

n
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4.2. Feature Engineering and Representation Learning

Feature engineering remains a critical step in building ML-based prediction models despite the hype
surrounding the capabilities of deep neural networks. Traditional machine learning algorithms such as SVM and
XGBoost typically require expert-built features for optimal performance. For decision tree models particularly,
carefully constructed features can be instrumental in avoiding the risk of overfitting. Domain expertise is
invaluable for generating such features that can maximize predictive performance, produce easily interpretable
models, and accelerate the search process in hyperparameter tuning. Feature studio platforms that combine high-
quality evidence with the experience of data scientists and clinicians can facilitate and speed up the construction
of relevant features based on lab tests and imaging studies, among others.

Deep learning, however, has triggered a radical shift in how data representation is learned and if feature
engineering is even required. The success of deep learning methods, especially for unstructured data ranging
from text to images to video, has enabled model performance to increasingly depend on the volume of data as
opposed to the quality of features used. With sufficient amounts of curated training data, DNNs can learn low-,
mid-, and high-level features automatically and implicitly while generalizing well on unseen data by virtue of
regularization techniques that prevent overfitting. Moreover, DNNs in the form of CNNs have superior
capabilities for non-Euclidean structured data such as those generated in graph-based settings as well as for
images. When pretrained on large annotated datasets and subsequently fine-tuned on task-specific datasets,
DNN architectures can serve as general-purpose function-approximators. In the context of clinical risk
prediction from tabular data, representation learning through fixed, learned, or transferrable embeddings can
also assist in shortening the search for optimal features with reduced data.

Metric comparison (synthetic example)
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5. Evaluation and Regulatory Considerations

Performance Metrics for Clinical Risk Models. Apart from accuracy, likelihood, precision, and recall, ML
methods focus on metrics such as sensitivity, specificity, area under the receiver operating characteristic curve
(AUROC), area under the precision-recall curve (AUPRC), Brier score, and net reclassification improvement
index (NRI). Sensitivity indicates the probability of correctly predicting a beneficial clinical outcome, whereas
specificity measures the probability of correctly predicting an adverse clinical event. The AUROC provides a
means of assessing the predictive performance of models that output probabilities rather than binary
classifications. The Brier score is particularly useful for assessment of probabilistic predictions of binary
outcomes; it measures the mean squared difference between predicted probabilities and the eventual outcomes.
The NRI enables researchers to quantify the extent to which a new risk instrument provides improved clinical
predictions compared to an older risk score.

External Validation and Transportability. Compared with classical statistical models, ML algorithms are often
perceived to have greater flexibility in predicting outcomes across diverse patient cohorts. Characteristic
heterogeneity in the patient population—e.g., age, ethnic background, sex, comorbidities, socioeconomic
status—has been shown in clinical practice to affect the likelihood of patient responses to specific treatments. It
is therefore clinical best practice to first evaluate model performance in the primary cohort before then
validating predictions in external independent cohorts of patients. External validation, transferability, and
transportability across cohorts from different geographies, health-care settings, and populations are critical areas
of focus for more advanced predictive ML algorithms. Transportability is the degree to which a risk prediction
function developed in one cohort can be applied in other cohorts without reestimation of the coefficients.
Broadly speaking, differences in the distributions of significant risk model predictors between the model
derivation cohort and the population under consideration should be minimal.

5.1. Performance Metrics for Clinical Risk Models

Risk models are evaluated with a range of performance metrics that reflect specific clinical and user
requirements. Through these metrics, model developers, regulatory agencies, and end users can assess a model’s
performance and see whether it aligns with its intended purpose or use. Standard metrics in predictive analytics,
including area under the receiver operating characteristic curve (AUC) and area under the precision-recall curve
(AUPRC), summarize the predictive skill of the model under both class-imbalance and class-balance settings.
AUC is a misleading metric when the positive class is very rare, whereas AUPRC is not. Thus, AUPRC is
preferred, though prediction-oriented metrics such as accuracy, F1 score, Matthew’s correlation coefficient, and
Brier score, which assess predictive skill on the designated operating point, are often favored in clinical
applications.

Bennett and Dorr provide a helpful overview of the most relevant evaluation metrics for risk models and their
relative merits. These can be categorized into model fit and discrimination, calibration, or clinical utility. Fit
metrics such as Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) indicate how
well the model approximates the training data and take into account both goodness of fit and model complexity.
Discrimination measures such as get C-statistic, AUC, and gloss provide a single number that conveys how well
the model distinguishes between subjects who experience the event and those who do not. Calibration measures
assess the degree of concordance between predicted probabilities and observed probabilities, whereas clinical
utility metrics gauging whether the model can improve clinical outcomes compared to existing alternatives.

Fig 3: Performance Metrics for Clinical Risk Models
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5.2. External Validation and Transportability

As highlighted, assessing a clinical risk model’s predictive performance (typically, AUC or ROC) on an
independent external dataset is critical to bolster evidentiary support of its utility. The goal of recognizing the
evaluation of the model on an independent external dataset with a sample size large enough to offer a
meaningful test is noted. Beyond size, adequate definitional concordance of the external validation set with the
derivation dataset is also essential. Additionally, the external validation cohort must remain independent from
the derivation cohort with respect to individual patient membership. Transportability quantifies the performance
of a risk model on population subgroups not included in the derivation dataset. For instance, a cardiovascular
risk model may exhibit significant predictive performance within, say, South Asian populations or older
individuals — populations not included in the original model's derivation but reported on in a smaller-scale
independent study.

In domains such as cardiovascular risk prediction, routine examination of transportability has prompted
numerous models to appear explicitly oriented for South Asian populations, given low clinical adoption of
Western risk factors in such high-risk cohorts. When a risk score's transport ability fails validation, variance in
the predictive ability of its constituent risk factors has often been implicated, justifying alternative visual
approaches (such as cover plots) to illuminate precise factors driving the score's predictive power. Relying on a
model's predicted probabilities underscores uncertainty and may exacerbate poor calibration, thereby muddying
the signal of an external validation or transportability assessment. Difficulty in evaluating classifier-based
models across stratifications of sample size, follow-up duration, and data set characteristics remains a pervasive
limitation, coupled with scant dedicated scholarship on the transportability of nonstatistical machine-learning
models.

Equation 4: PCA (PC1, PC2) used before ML
Step 1: Covariance matrix

1
= XX
S n—1

Step 2: Eigen-decomposition
S'Uk = lkvk

where v, are principal directions, ordered 1, > 1, > ---.
Step 3: Principal component scores
PC1 scores:
PC1 = Xv,

PC2 scores:
PC2 = XUZ

6. Applications in Clinical Domains

Research in the domain of clinical prediction is naturally inclined toward cardiovascular disease risk typing,
with efforts often focusing on either improved prediction using traditional risk factors or risk grouping based on
blood biomarker testing. A meta-analysis of existing scores for coronary heart disease prediction using
established clinical risk factors found that 47 % of models did not undergo external validation. More recent
studies on statistical outcomes of such scores demonstrate a similar tendency toward internal validation or, in
the case of machine learning, the absence of validation altogether. Consequently, the rules emerging from
classical clinical risk score applications have become rather automated, similar to the plethora of new models for
10-year Framingham risk score equivalents, with the addition of novel predictors such as family history or
hsCRP level. To that extent, the digital tool kit available to physicians is converging toward applicability,
succinctness, and universal acceptance.

The oncology domain has seen mature and systematic application of both radiomic (i.e., ML across pre-existing
image features) and pathomic (ML across pre-existing histopathological features) layer techniques, particularly
in predicting recurrence risk after treatment with a curative aim and in the imaging of lung and breast cancer.
Formal attempts to integrate multi-modal data in such models remain limited even in renowned datasets such as
The Cancer Genome Atlas, primarily owing to the fact that most data types do not possess the spatial continuity
or sparsity of image data; yet if properly implemented, the concept of data fusion holds promise for cancer care.
Despite being the worst disease for prediction in clinical decision support systems, infectious disease prediction
is also the domain where the greatest emphasis on precision risk typing exists, largely because the type of data
available (e.g., travel flows) easily accommodates predictive mapping.
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6.1. Cardiovascular Risk Prediction

Human vascular disease accounts for approximately a third of global mortality. Coronary heart disease, strokes,
peripheral vascular disease, and aortic aneurysms often share common pathophysiological mechanisms and are
discussed together under the heading of cardiovascular disease (CVD). Simple CVD risk models based on
friality points such as age, blood pressure, smoking status, diabetes, and cholesterol levels, combined with a
limited set of additional risk factors, such as family history and race, can predict either fatal or non-fatal CVD
events reasonably well over 10 years. However, a more precise determination of absolute risk in patients who
have not had a CVD event before is clinically valuable and may improve the impact of risk-reducing therapy.

In the Framingham Heart Study, ML methods were used to model the probability of developing coronary heart
disease in a population of participants without diagnosis at baseline. The same ML models were trained for two
time horizons (2 and 4 years) to explore the trade-off between predictive performance and model transparency.
The five methods were used in combination (predicting with each method separately and selecting the model
with lowest validation score provided) and in ensembles of two, three, or four models. The C4.5 classification
tree generated the best combination of predictive discrimination and interpretability, resulting in a predictor
based on a fewer number of risk factors than the traditional Framingham Heart Study point calculator.

Machine Learning—based Cardiovascular Disease Patient Open Data coupled with ML algorithms demonstrated
more accurate predictive models than other linear algorithms in the identification of high-risk patients with
diseases complicated by CVD. Survival analysis identified three significant factors affecting the survival of
patients with coronary heart disease and associated chronic depressive symptoms: history of previous
myocardial infarction, cardiac surgery, and ischemic stroke.

Equation 5: Evaluation metrics (Sensitivity, Specificity, AUROC, AUPRC, Brier, etc.)
Given probability scores p;, define 9; = 1[p; = t].

e TP: predicted 1, true 1

e FP: predicted 1, true 0

e  TN: predicted 0, true 0

e FN: predicted 0O, true 1
Sensitivity / Recall / TPR

. R TP
Sensitivity =P =1y =1) = TP TEN
Specificity / TNR
Specificity = P(9 = 0 [ v = 0) = TN
pecificity = P(9 = 0| y = 0) = ==
FPR
FPR = 1 — Specificity = kP
= pecificity = =5

Vary the threshold tfrom 1 down to 0.
At each t, compute (FPR(t),TPR(t)).
Plot TPR vs FPR.

AUROC is the area under that curve:

1
AUROC =f TPR(FPR) d(FPR)
0
In practice (discrete points), trapezoidal rule:

m-1

TPRy41 + TPRy

AUROC =~ (FPR, 41 — FPRy) - 5
k=1
At each threshold ¢:
Precision(t) = P Recall(t) = ™
recision(t) = TP+ Ep’ ecall(t) = TP+ FN

Plot Precision vs Recall.
AUPRC:

1
AUPRC =J- Precision(Recall) d(Recall)
0
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6.2. Oncology and Precision Medicine

The second area of clinical prediction over the past twenty years that has received ample attention is oncology,
with major focus on cancer detection and therapeutic delivery methods. Machine learning methods built on
pathology images, e.g., convolutional neural networks, are being used widely for detection, while risk models at
the patient level are needed for treatment selection. For any cancer type, besides stage, other individual-specific
risk indicators are needed for best treatment choice. Similar to cardiovascular applications, myriad such models
have now emerged. Given the concern about induction of bias or treatment-theft in clinical risk models,
prediction within stratification of patient sub-populations, based on a conventionally accepted clinical indicator,
remains the most trusted approach for the day, even if that conventional predictor alone is insufficient for
treatment selection.

Fairness of a proposed risk scoring model in the prediction of an oncological end-point outside the model-
building cohort, represented by arguably the most important clinical development of the past two decades, also
provides insight within this area. The recent rapid strides towards individualized patient-specific therapy in
oncological domains, amply justified by differences in inherent and therapeutic responses among ethnic/racial
groups, provide crucial timely domain-specific application-area differentiation. Recent model developments
have now provided black-white routes or pathways to a large number of end-points in oncological scoring and
therapy-determining contexts.

7. Challenges, Limitations, and Future Directions

Data-driven health-care solutions to improve health outcome and quality of life for individuals with wide socio-
stratification range have become a trend. Yet, models built on only selected or isolated population constitute
potential risks. The consequences of algorithmic bias due to disproportionate representation of certain
demographic groups in health-care models may undermine their real-world interchangeability and
generalizability. The awareness of fairness and equity across diverse populations continues. Moreover, rare-
event prediction and extreme high-dimensional features (e.g., Oncology) may require special attention to model
robustness against overfitting.

Whereas, Data reliability and compatibility are critical for the development of predictive algorithms. Lack of
transportability has been identified as a main challenge toward ensuring model adoption across various clinical
environments and increased real clinical value. Beyond standard external model validation for individual or
multicentric studies, frameworks based on extreme validation set and hitters’ hypothesis have been proposed.
Building on these concerns, contemporary research increasingly emphasizes the need for methodological
frameworks that explicitly integrate fairness, robustness, and transportability into the lifecycle of data-driven
health-care models. Rather than relying solely on conventional development pipelines optimized for overall
accuracy, emerging approaches advocate for stratified performance assessment across demographic and clinical
subgroups, incorporation of bias-mitigation strategies during training, and systematic stress-testing under
distributional shifts. In parallel, advances in rare-event modeling and high-dimensional learning highlight the
importance of regularization, representation learning, and uncertainty-aware methods to prevent overfitting and
preserve clinical interpretability, particularly in complex domains such as oncology. Complementing standard
external validation, extreme validation sets and hitters’ hypothesis—driven frameworks offer promising avenues
to probe model behavior in edge-case scenarios and heterogeneous settings, thereby providing deeper insight
into failure modes and generalizability. Collectively, these efforts underscore a paradigm shift from building
merely performant models toward developing trustworthy, equitable, and transportable predictive systems
capable of delivering consistent real-world value across diverse clinical environments and populations.

CHALLENGES

Data Heterigeréty

Model Interpettablity

Lack of Ground Truth

Regulatery Hurtdes

Fig 4: Challenges, Limitations, and Future Directions
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7.1. Data Bias, Fairness, and Equity

Significant advances in data collection have afforded unparalleled opportunities for personalized and precision
medicine through extensive and diverse population-based healthcare data. Yet, the high-dimensional datasets
employed in Big Data analysis may inherently lead to data bias. The size of the training cohort may act as a
double-edged sword: on the one hand, a large cohort may contain more outliers, and on the other hand, a cohort
that is orders of magnitude larger than the test cohort may not ensure generalization to the target population.
While ML models have shown promise for improving prediction accuracy, they may inadvertently learn biases
inadvertently encoded into the data, leading to questions of fairness and equity of risk prediction models: which
groups of patients would be disadvantaged? Would the model be interpretable for high-stakes medical decision-
making?

Unbiased representation of specific subpopulations, such as racial minorities and patients of a certain sex, in
both training and test cohorts is essential for equitable clinical use. Some research has demonstrated that fair
decision boundaries with respect to sensitive attributes can be learned, while other studies have investigated
fairness-aware learning. Most of these approaches incorporate fairness constraints directly into the learning
process via adversarial methods, discern performance across groups during model selection, and explicitly
reduce the information about sensitive attributes in the features during representation learning. Statistical
techniques have also been proposed to decrease data or decision bias while maintaining accuracy.

7.2. Robustness, Generalizability, and Reproducibility

The risk of overfitting with machine learning (ML) is a concern shared across many data domains. Yet in
healthcare, prediction models trained on large amounts of patients and events often generalize well to external or
new clinical settings, even in the absence of explicit regularization. That said, the transferability of ML models
remains an open question, particularly when applied to subpopulations or healthcare systems with significantly
different case mix, including socio-economic features. In such circumstances, demographic, economic, or ethnic
imbalances may lead to disparities in care, such as in heart failure prediction, where deprivation indices were
shown to be predictive in men but not in women.

Although cross-site validation is always preferable, a lack of external cohorts from independent sources can
hinder assessment of a model's transportability. Nevertheless, ML can often help garner insights concerning
distributional differences. Models used to assess risk in electrocardiograms, for instance, were shown to be
incompletely invariant across age. Population-stratified models, defined using supervised clustering, provided
both improvements to accuracy and increased interpretability, delineating clinically-relevant groups of ECG
traces.

The growing popularity of autoML systems, while practical for exploratory endeavors, can compound issues of
generalizability. Models generated by these platforms can be complex, feature-rich, and often lack
interpretability or the capacity to convey clear clinical information. Moreover, when frequently adopted by non-
experts simply to gain access to publishing venues, numerous papers may unwittingly instantiate a similar
methodology to the same clinical risk or progression problem. In such circumstances, translational utility often
becomes less about answering a specific question and more about simply obtaining yet another model for a
particular disease.

8. CONCLUSION

Exponential improvements in digital storage, computational power, and connected devices have paved the way
for the Big Data revolution. Healthcare, a cornerstone of modern economies, generates vast amounts of data in
electronic Charlotte models, payers, pharmacies, clinics, and hospitals recording information about patients, test
results, treatments, and costs. Although Big Data volumes have increased exponentially and their breadth has
widened, they are still of limited use for clinical care, clinical risk prediction, and clinical decision support
because predictive models are generally developed by a small number of specialized centers using traditional
population-level datasets. It is essential to establish frameworks that harness Big Data—enabled artificial
intelligence to make clinically applicable predictions more widely.

Risk models predict probabilities of onset of diseases or events in predetermined time horizons and are typically
built using supervised statistical methods and represented in the form of scores or web portals accessible to
medical professionals. Model performance is assessed using metrics adapted from information retrieval, and
conclusions focus on internal, out-of-sample validation because real-word litmus tests are rare. Recent advances
have made it possible to assess risk scoring in the Big Data context using modern ML methods, beginning with
the construction of a framework that supports the construction of risk models from the ingesting, integrating,
and storage of Big Data through representation learning and feature engineering.

8.1. Future Directions

With widespread Big Data availability, the growth of advanced computing architectures operating with the
cloud, the maturation of ML methods and statistical frameworks appropriate for High-Dimensional Data
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Problems, and the introduction of new paradigms enabling the crowd-sourcing of knowledge representation and
modeling, Machine Learning and especially Deep Learning approaches have gained ground in many application
areas. These advantages make them more promising for the prediction of difficult to model clinical events.
Nevertheless, important challenges must still be addressed before this potential can be fully achieved.
Healthcare decision-making should ultimately aim to provide health services to patients equitably and fairly
while reducing health deprivations and disparities across population groupings. Empirical evidence suggests that
unequal healthcare treatment and poorer clinical outcomes can be attributed to patient grouping based on some
sensitive attributes such as sex, sexual identity, racial identity—especially in the USA, socioeconomic attributes,
or prevalent clinical conditions among others.

Recent ML literature supports the claim that these same attributes can induce data biases that impact model
fairness. Demographic considerations must therefore complement traditional performance evaluation measures.
Decision support based on ML prediction of ordinal or categorical outcomes often leads clinicians and care-
takers to classifying subjects in a single fragile class. Transportability of prediction models is often poor, with a
model trained over one population not being able to yield reliable predictions on another, independently
sampled, population and such generalization ability is not always easy to estimate. These issues are further
aggravated by the use of external APIs and the creation of proprietary data lakes by tech giants. Addressing
these concerns and presenting some recent solutions opens avenues for future research able to contribute
towards a deeper understanding of ML prediction at large scale in medicine.
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