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ABSTRACT 

Breast cancer is a leading cause of death for women worldwide. Breast thermography, a non-invasive imaging 

technique, can detect breast irregularities that may lead to breast cancer in the long run. Early identification of 

the risk of breast cancer can potentially prevent the disease and save lives. AI has emerged as a technological 

breakthrough in the healthcare sector and can be used with breast thermography and deep learning (DL) 

techniques for early breast cancer diagnosis.This study uses DL for breast region of interest (ROI) segmentation 

to facilitate breast cancer screening. Semantic segmentation using the atrous convolution DL model can 

effectively separate the ROI from breast thermography images. The deep learning system, ROISegNet, includes 

a decoder module that utilizes atrous convolution in the encoder, enhancing the efficiency of semantic 

segmentation. The framework's realization is demonstrated through an algorithm called Intelligent Segmentation 

of Breast ROI (ISBROI). According to our empirical investigation using the benchmark dataset DMR-IR, 

ROISegNet achieved a maximum accuracy of 98.63%, outperforming other models such as VGG19, ResNet50, 

InceptionV3, and Atrous Convolution. 
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1. INTRODUCTION 

BC is among the most prevalent cancers among women diagnosed globally [1]. Currently, about 15% of all 

cancer-related fatalities in women are due to BC [2]. Breast disorders can be identified using imaging 

techniques, medical specialists, and self-examination. A biopsy is the sole method available to ascertain whether 

cancer is present or not [4]. These days, a variety of procedures for imaging, like ultrasound and mammography, 

are employed to detect BC at an early stage. Because mammography is inexpensive, highly detectable, and 

produces reliable findings, it is the most widely utilized screening modality. Breast cancer may be detected and 

classified using mammograms, an exact imaging method. It is known to function badly in a few cases, though, 

especially in those with dense breast tissue. Adolescent females may also suffer from severe side effects from 

ionizing radiation. In addition, mammography is known to have trouble detecting tumors smaller than 2 

mm.These disadvantages have led to much interest in thermography, a recently discovered  BC screening 

technique. Thermography is an inexpensive, non-invasive, radiation-free, and exclusive method [2]. As such, it 

can be used to identify young women and those with big breasts who have early-stage BC. 

The fundamental idea of thermography is that anything organic emits IR radiation above zero degrees Celsius. 

IR radiation is converted into electrical impulses by an infrared thermal camera used for breast thermography. 

The result is a thermogram. Potential anomalies are brought to light by their temperature scale, which 

distinguishes them from normal tissue [17]. Breast thermography is more advantageous than mammography, 

including breast tissue thickness compatibility, comfort for male patients, and effectiveness across all age 

groups. Since thermography is renowned for being quick, secure, and precise, BC can be identified 

early.Segmenting the breast tissue is a crucial step in detecting BC. It is a technique for distinguishing, in 

thermal imaging, the breasts about other bodily parts [16]. To the greatest extent feasible, the excised area 

should contain every breast tissue, lobule, lymph node, and duct. Breast segmentation can be carried out fully 

automatically or entirely manually. Since each breast is amorphous and these images lack defined borders, most 

scientific research chooses to remove the breast area extraction operation manually or through a semi-automated 

process. 

The last few decades have seen a focus on ML methods for thermography-based BC diagnosis; some 

researchers have studied tumor location and size, while others have studied features like breast quadrants and 

collection methods. Multilayer CNN are used in ML techniques such as deep learning. Deep learning may 
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automatically extract a training dataset's features [18]. With encouraging findings, researchers have recently 

employed CNNs to identify BC. CNNs were not commonly used in the past for the thermal imaging-based BC 

diagnosis procedure, Possibly because they are less efficient or have a higher computational weight than textural 

or statistical features [3]. One of the greatest approaches for pattern recognition nowadays is thought to be 

CNNs. 

During training, the thermal imaging features used as noise in CNN models show the neck, shoulder, chess 

piece, and other extraneous body components. Pictures from thermography are challenging to understand 

because of their low spatial resolution. Because the segmentation results greatly influence the outcome of the 

classification procedure, it is imperative to identify the breast region in the thermal pictures. BC is one of the 

leading causes of death for females, as was previously established. Early detection is, therefore, essential to save 

lives. The radiology's interpretation of the thermogram determines the diagnostic effectiveness of thermography 

imaging, which uses infrared technology to discover breast cancer. As far as we know, there are several issues 

with the earlier work. These consist of (1) dataset limitations, (2) related work studies that excluded certain parts 

of the breast from segmentation models,(3) segmentation models with (4) investigations evaluating their model 

based just on the accuracy score, and a manual exclusion of the breast region. Nevertheless, If the dataset is 

unbalanced, a high accuracy rate does not guarantee that the model can distinguish between every class. Our 

research primarily focuses on thermal imaging-based breast region segmentation. According to the literature 

review, breast ROI segmentation utilizing DL and encoder-decoder architecture has not been the subject of 

significant research. We have provided the goods listed below. 

1. To automatically segment the ROI from breast thermogram imaging, we suggested a deep learning system 

called ROISegNet. Our method leverages efficiency in semantic segmentation by designing a decoder 

module and using atrous convolution as part of the encoder. 

2. We proposed an algorithm called Intelligent Segmentation of Breast ROI (ISBROI).  

3. We created an application to evaluate ROISegNet. Our empirical analysis using the benchmark dataset 

DMR-IR shows thatROISegNet performs better than other models, including VGG19, ResNet50, 

InceptionV3, and Atrous Convolution. 

The remaining portion of the job is organized as follows: Section 2 summarizes earlier studies andoffers 

semantic image segmentation for breast thermal pictures. Section 3 presents our method and underlying 

framework. Section 4 displays the results of our empirical investigation. Section 6 concludes ourstudy. 

 

2. RELATED WORK 

Previous studies on thermal image-based breast segmentation for BC detection are reviewed in this section. A 

novel thermography method that detects breast cancer by combining infrared pictures and machine learning was 

investigated by Karthiga and Narasimhan [1]. Cubic SVM produces accuracy rates with enhanced ROI 

selection, morphological processes, and curvelet transform. With radiation-free thermal infrared imaging, Yadav 

and Jadhav [2] is a thermography-based method for early sickness identification. Compared to mammography, 

machine learning-based thermal scan analysis provides more effective options for non-invasive medical 

diagnosis. Cauce et al. [3] state that a unique method for diagnosing breast cancer combines clinical and 

personal data with thermal imaging using a multi-input CNN, significantly improving diagnostic accuracy.Even 

when mammography performs well, it can cause pain, as noted by Macedo et al. [4]. BC diagnosis is crucial. 

The assistance of machine learning improves breast thermography accuracy. Abhisheka et al. [5] noted that BC 

is a worldwide concern, with over 2.1 million diagnoses annually. Early diagnosis is crucial for higher survival 

rates, and AI-based techniques make this feasible. The study aims to guide future research towards developing 

automated and reliable models for BC diagnosis. 

Breast cancer is a significant worldwide issue, as highlighted by Tsietso et al. [6], which underscores the 

importance of early detection. Their work proposes a multi-input CADx system that uses several viewpoints of 

BTs and clinical data, offering a comprehensive approach to BC detection. The results of their study, which 

show increased sensitivity, suggest a potentially less costly and safer screening technique.Early diagnosis is 

crucial for BC, as emphasizedby research from Rajinikanth et al. [7]. This paper develops an automated 

detection approach that achieves high accuracy by using a Decision-Tree classifier with breast thermal 

pictures.BC requires accurate early detection because it is the leading cause of death for women, as noted by 

Houssein et al. [8]. This study studies applications of machine and DL to multi-modal medical imaging with an 

emphasis on trends and issues.Both genders were impacted by Mashekova et al. [9], which calls for early 

diagnosis using BC. Despite its limitations, thermography has gained popularity due to advancements in 

technology. AI increases accuracy, but more study and development are required.Early detection is crucial, as 

noted by Resmini et al. [10]. For screening and diagnosis, thermography is a non-invasive method that shows 

potential. Additional enhancements are advised since the proposed approach shows potential. 

A study by Houssein et al. [11] contributed to the discovery of abnormal temperature fluctuations that might be 

signs of breast cancer. An enhanced Chimp optimization algorithm (IChOA) performs better than 

rivalsregarding performance metrics and picture segmentation accuracy. Future research aims to investigate 
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machine learning hybridization with larger datasets. The rising incidence of cancer, as well as its severe nature 

and high fatality rate, were noted by Lakshman et al. [12]. With a greater accuracy rate, Random Forest 

outperforms Support Vector Machine in the identification of cancer. Zeiser et al.'s [13] improved WSI 

segmentation is made possible by the CNN model DeepBatch. It enhances cellular understanding and has 

the potential for various cancers. Future goals include pretraining ResNet-50, multimodal exploration, 

micrometastasis detection, and ethical considerations.Early detection is critical to improving survival rates from 

BC, which is a global risk to women, according to Rezaei et al. [14]. This study looks at image-based diagnostic 

methods focusing on 2016–2020. The difficulties include complexity, cost, accuracy, and dependence on 

people. In the future, addressing challenges with massive data, considering patient information, and combining 

modalities will be given priority. Liu et al.'s [15] pliable focus Automated metastatic axillary lymph node 

detection in BC CECT using the VGG19 model pictures produced greater accuracy than earlier methods. The 

algorithm reduces the work for physicians by providing daily diagnostic help. Future work will focus on three-

dimensional analysis, multi-center validation, and better lesion identification. 

When comparing  DL  with  ML  to predict the recurrence of BC, Krithiga and Geetha's [16] problems with 

sensitivity and specificity are emphasized. The study assesses several characteristics and methods for 

histopathology image interpretation, focusing on accuracy improvements and potential big data analytics 

applications.To identify abnormalities in breast thermograms, Sharma et al. [17] proposed a method based on 

superpixel-based ROI segmentation and the shearlet transform. Attains a high level of classification accuracy 

and robustness against incorrect coloring.Bai et al. [18] found that  DL changes diagnostic imaging and 

guarantees technical flexibility when used for BC screening, especially when combined with DBT. For breast 

cancer thermography, Yousefi et al. [19] presented Deep-SemiNMF and discussed the challenges in basis 

selection. The model has an impressive categorization capacity, with an accuracy rate of 71.36%. A breast 

cancer CEUS video classification model with an accuracy and sensitivity of 86.3% was developed by Chen et al. 

[20] by combining the subject matter knowledge of radiologists. 

Advances in medical imaging by Tariq et al. [21] enhance breast cancer early detection. Computer vision and AI 

classify abnormalities from image modalities, enabling effective computer-aided detection.To segment  BC 

radiotherapy, Bakx et al. [22] tested a DL model that ensures both qualitative and quantitative analysis for 

therapeutic application.Yadav et al. [23] looked at applying hybrid, ML, and DL approaches for  BC detection 

using mammography datasets and Wisconsin databases. SVM is the most accurate classifier available. Future 

research may include methodologies such as ensemble machine learning and dimension reduction. A model 

proposed by Li and Lu [24] uses ResNet101 or MobileNetV2 for breast cancer diagnosis and U-Net for 

segmentation. Pathologists can swiftly and precisely identify patients thanks to the competitive outcomes. A 

software developed by Kadry et al. [25] recognizes breast tumors in MRI slices by applying the Slime Mold 

Algorithm and Watershed Segmentation. Imageperformance measures demonstrate clinicalsignificance. 

Applying DL radiology to assess patient therapy in advanced breast cancer enhanced results, as reported by 

Peng et al. [26]. More datasets and optimal architecture are required to overcome obstacles in ultrasound-based 

DL. Future research in multimodal analysis is recommended. Real-time communication, ML, and thermography 

are integrated into the portable infrared imaging system Krishna and George suggested [27] to monitor breast 

health in remote locations. To construct a more comprehensive CAD system, plans aim to expand the dataset, 

enhance accessibility, and provide other views.Pereira et al. [28] proposed enhanced attribute selection for 

breast thermography-based cancer diagnosis. Satisfactory results suggest that generality and accuracy may rise. 

A minimal database size and age restrictions are a couple of the restrictions. Future goals include expanding the 

dataset and researching further attributes and methods of selection.Mammography is crucial for the early 

detection of BC, as noted by Meenalochini and Kumar [29]. It looks at machine learning techniques, focusing 

on how well they categorize data. Research of a similar nature was discovered in [30].  

A method for identifying BC from thermal images was described by Ibrahim et al. [31]. It involved adjusting 

quick-shift parameters and using the recommended CSSA. The CSSA approach yields strong segmentation 

results for breast cancer detection, improving accuracy and convergence. Thermal imaging is helpful for early 

breast cancer detection, as shown by Kakileti et al. [32]. It recommends cascading CNN architecture and 

displays a high dice index for accurate, view-independent segmentation.The significance of  BC and the 

requirement for early detection methods were highlighted by Husaini et al. [33]. There is potential for 

combining thermography with AI. Open research questions are offered with review topics.By BC, women were 

more likely to have Raghavendra et al. [34] developed at critical junctures. It is easier to analyze with 

thermography. This study examines the accuracy gains from computer-aided diagnosis. Human thermography is 

a vital medical tool that Farooq and Corcoran [35] improved. The application of  IR thermography facilitates the 

diagnosis of COVID-19 and cancer. The suggested CNN approach yields 80% accuracy in identifying breast 

tumors. 

Singh and colleagues [36] investigated the early detection of  BC risk. When used with mammography, IR 

breast thermography allows for painless, non-invasive diagnosis. Machine learning produces more excellent 

reliability.BC is a significant cause of mortality that is more common in developing nations because of delayed 
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diagnosis, as discussed by Kakileti et al. [37]. Future validation of a broader and more diverse population will be 

made possible by the foundation this study creates.An automated method utilizing statistical features to attain 

competitiveness for the classification of BTpictures was proposed by Ruiz et al. [38]. The following studies will 

extract all textural properties from GLCM and investigate CNN, a feature extractor of DL. Mahmood, together 

with others. [39] emphasized the challenges associated with misdiagnosing breast cancer and advocated for the 

deployment of efficient DL-based methods. The analysis assesses modality, segmentation, and classification and 

makes improvements for reliable outcomes. Gomathi et al. [40] introduced the  AMF and UAFT to automate the 

detection of BC. The proposed technique shows promising results in detecting cancer-impacted variations and 

may be able to diagnose BC, which encourages further research. As the literature review makes clear, there isn't 

much study on deep learning using encoder-decoder architecture for breast ROI segmentation. 

 

3. PROPOSED FRAMEWORK 

Our deep learning system, ROISegNet, was proposed for the automated separation of ROI from breast 

thermograms. The encoder-decoder architecture, consisting of an encoder with atrous convolution and a 

specially designed decoder network, is the framework's foundation. Effective segmentation is applied to 

generate the ROI (breast area) from the provided input breast thermal picture. This aids in the automatic 

detection of anomalies that may eventually result in breast cancer.Stated differently, thermogram analysis has 

the potential to identify breast cancer risk early on. The ROISegNet deep learning framework, depicted in 

Figure 1, is considered significant in this context. An essential architecture component is the atrous convolution 

method for obtaining dense features for semantic segmentation. 

 

3.1 Dense Feature Extraction 

Applying Fully Convolutional DCNNs to semantic segmentation tasks has demonstrated promising results [42, 

43]. Aside from the fact that repeated application of max-pooling and striding at progressively higher layers of 

these networks significantly reduces the spatial resolution of the resulting feature maps, in modern DCNNs, this 

decrease is often by a factor of 32 in each direction [44, 45]. To recover the spatial resolution, these networks 

use deconvolutional layers. Instead, we propose to adopt atrous convolution, which was first introduced in [46]. 

It was previously applied in the context of DCNN by [47]. For efficiently calculating the undecimated wavelet 

transform. For two-dimensional signals, an intensive convolution is carried out over the output y at each point I; 

according to Eq. 1, filter w is applied to the feature map input x. 

y i =  x i + r. k w k k    (1) 

To create a stride convolution, sometimes referred to as a convolution with up-sampled filters, Between each 

filter value step along each spatial orientation, r - 1 zeros are injected. This is the same as taking r steps to 

sample the input signal. Through atrous convolution, the rate value may be varied to change the filter's field of 

vision adaptively. In contrast, Rate r = 1 is an example of ordinary convolution. 
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Figure 1:An ROI segmentation system called ROISegNet is suggested for deep learning analysis of breast 

thermograms. 

Furthermore, for fully convolutional networks, atrous convolution gives us control over the density at which 

feature responses are produced. In this case, the output stride displays the ratio of the input picture's spatial 

resolution to the final output resolution. For the image classification problem, the output stride of the DCNNs 

[44], [45] is 32 since the final feature responses (before fully linked layers or global pooling) are 32 times 

smaller than the input picture dimension. The resolution-reducing stride of the final pooling or convolutional 

layer is adjusted to 1 to yield up to 16 output strides, doubling the spatial density of the computed feature 

responses from the DCNNs without causing the signal to become weaker. Use a rate of r = 2 to substitute all 

subsequent convolutional layers after the atrous convolutional layers. Therefore, we need to learn new abilities 

to extract richer feature responses. Refer to [48] for further details. 

 

3.2. Atrous Convolution Design  

Our first focus is on the construction of cascaded atrous convolution modules. To put it another way, we take the 

final ResNet block and duplicate it, arranging the copies in a column. Except for the convolution with stride 2 in 

the last block, which resembles the original ResNet, each block has three 3 × 3 convolutions and a final 

convolution included. The strategy behind this approach is the faster gathering of long-range data in the deeper 

blocks, which is made possible by striding. For example, the final small-resolution feature map might provide 

asummary of the overall feature.The pace at which Atrous convolution is carried out is, therefore, determined by 

the intended output stride value. However, as we can see, the subsequent stride obliterates detailed information, 

detrimental to semantic segmentation. We assess our proposed model cascading ResNet blocks up to block 7 

with an output stride of 256. This model is evaluated without an atrous convolution included. As we were 

inspired by multi-grid techniques [49], [50], which use a series of grids with different sizes, we incorporated 

distinct atrous rates among blocks 4 through 7 in the suggested paradigm. Multi Grid = (r1, r2, r3) specifies the 

explicit working speeds of the blocks 4 through 7 convolutional layers. The convolutional layer termination 

speed is obtained by multiplying the unit rate by the applicable rate. In block 4, the three convolutions will have 

rates such as 2 * (1, 2, 4) = (2, 4, 8), where the output stride is 16, and the multigrid is 1, 2, 4. 

 

3.3. Pyramid Pooling 

We revisit the notion of ASPP as presented in [48], whereby four contemporaneous feature maps with atrous 

convolutions at distinct atrous rates are used. The concept for ASPP was based on the efficiency and 

dependability of spatial pyramid pooling [51], [52] in resampling characteristics at different scales to identify 

areas on any given scale. Unlike [48], we incorporate batch normalization into ASPP. ASPP successfully 

captures data on several scales at varying atrous rates. We find that increasing sample rate decreases with the 

number of legitimate filter weights (i.e., weights applied to the valid feature region instead of padded zeros). 

Figure 4 shows how a 65 x 65 feature map may be processed using a 3 × 3 filter with various atrous rates to get 

the required outcome. When the feature map size approaches the rate value, the 3 × 3 filter degenerates to a 

simple 1 × 1 filter instead of collecting the complete image context;thus, the only significant filter weight is the 

center one.To overcome this problem and give the model global context information, we employ image-level 

features similar to [53]. After bilinearly upsampling, the 256 filters feed image-level properties into a 1 × 1 

convolution in the appropriate spatial dimension [54]. After that, the model's final feature map is subjected to 

normalize and average pooling. 

To summarize, the components of our enhanced ASPP are (a) the image-level trait (Fig. 5) and (b) a solitary 1 x 

1 feature.Three 3 x 3 convolutions exist with 6, 12, and 18 speeds when the output stride is 16. Each of them has 

256 filters and batch normalization. Keep in mind that rates double when the output stride equals 8. Following 

each feature after branch concatenation, They execute another batch 1 x 1 convolution (standardizing with 256 

filters this time) after receiving the final 1 x 1 convolution to produce the logits. 

 

3.4 Interpret Design 

Including image-level and ASPP features, the final feature map is the last feature map the encoder computes. 

The method of convolution that employs kernel k × k and f filters is called [k × k, f]. We rely on ResNet-101 for 

training and evaluation [55]. The logits are upsampled bilinearly by 16 when the output stride equals 16. With 

this simplistic decoder architecture, which consists of only bilinear upsampling, performance is improved, and 

accuracy is 1.2% higher than training without this simple decoder. Our suggested design (Fig. 1) stacks the 

decoder module and encoder output on top of one another, building on this essential base. To find more 

potential designs, the decoder module examines three domains. The low-level feature map of the encoder 

module is first convolutionedto a 1 x 1 more petite size. We are doing a 3 x 3 convolution to yield more accurate 

segmentation results and, thirdly, choosing the low-level encoder characteristics. More specifically, we use the 

Conv2 features from the ResNet-101 network backbone and the final feature map from the res2x residual block 

to assess the impact of the 1 × 1 convolution in the decoder module [3 × 3, 256]. The encoder module operates 
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more efficiently with 48 or 32 channels in its low-level feature map. Channel reduction is achieved by using [1 

× 1, 48]. 

To illustrate the improved ROI segmentation, the module decoder's 3 x 3 convolutional architecture is then 

constructed. Two 3x3 convolutions with 256 filters perform better than one or three convolutions if the encoder 

feature map is encoded using the Conv2 feature map before striding. Reducing the filter count from 256 to 128 

or the kernel size from 3 × 3 to 1 x 1. will result in less performance. Using feature maps from both Conv2 and 

Conv3 by the decoder module is another possibility that is investigated. Once the decoder feature map has been 

concatenated twice, perform the [3 × 3, 256] procedure to improve each by gradually upsampling it using Conv3 

and then Conv2. From that point on, The entire decoding process is comparable to the design of U-Net/SegNet 

[56]. But there hasn't been any noticeable advancement. Lastly, two [3 × 3, 256] procedures enhance the 

combination of the encoder feature map and the channel-reduced Conv2 feature map. This uses the remarkably 

straightforward yet powerful decoder moduleNote that our proposed model's output stride is 4. Due to GPU 

resource constraints, we haven't looked at richer content output feature maps (output stride < 4). 

 

3.5 Planned Algorithm  

To implement our system, we suggested an approach called LbBROIS.Method 1 describes our process and how 

it works. 

 

Algorithm 1: Intelligent Segmentation of Breast ROI (ISBROI) 

Algorithm:Intelligent Segmentation of Breast ROI (ISBROI) 

Input:Breast thermogram dataset (DMR-IR) D 

Output:Results of segmentation of breast ROI, performance measures P 

1. Start 

2. (T1, T2)DivideData(D) 

3. Configure RSN model m as in Figure 1 

4. Compile m 

5. lfeaturesEncoding(T1) 

6. dfeaturesEncoderForDenseFeatureExtraction(T1) 

7. FConcatenate(lfeatures, dfeatures) 

8. m'TrainROISegNet(T1) 

9. RPerformSegmentation(m', F’, T2) 

10. PEvaluateModel(ground truth, R) 

11. Print R 

12. Print P 

13. End 

 

The input for our method ISBROIis the DMR-IR dataset D. It offers the ability to divide a given dataset into 

training and testing datasets in order to preprocess it. The constructed and assembled proposed network is called 

ROISegNet. The encoder consists of an atrous convolution, which may be used to probe convolutional features 

at various scales at varying rates. It produces low level features and dense features at the picture level. The 

ultimate feature map, used to train the model, is produced by concatenating the two types of features. Once 

trained, the model may be saved and applied to thermal image-based semantic segmentation of the breast ROI. 

The decoder assists the model in fine-tuning segmentation results and object boundaries based on test pictures. 

Performance statistics are obtained by comparing the suggested model's output  

 

3.6 Method of Evaluation 

Figure 2 shows the variety of performance indicators used to evaluate the proposed model based on the 

confusion matrix 

 

.  
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Figure 2: Confusing matrix 

The percentage of correctly classified pixels that are classed as positive relative to all correctly classified pixels 

is calculated using precision,which is given in Eq. 2.  

Precision (p) = 
TP

TP+FP
(2) 

Accuracy is a metric that shows the ratio of correctly identified pixels to all of the pixels in an image. This 

measurement comes from equation 3. 

Accuracy = 
TP+TN

TP+TN+FP+FN
(3) 

Conversely, the union metric intersection (Equation 4) determines the overlap between the ground truth and 

predicted masks. 

IoU =
TP

(TP+FP+FN)
(4)  

 

4. EXPERIMENTAL OUTCOMES 

Utilizing the DMR-IR benchmark dataset, our framework ROISegNet is assessed [41]. It wasretrieved at the 

UFF University Hospital. One thousand breast thermograms, divided into evaluation,testing, and validation 

groups, were employed in this investigation. The samples included both positive and negative breast cancer 

samples. The suggested framework aims to conduct ROI segmentation to facilitate future breast cancer 

screening.  

 

4.1 Results  

The results of our empirical investigation are shown in this section. Figure 3: An extract from the collection of 

DMR-IR breast thermograms. 

 

 
Figure 3: A sample from the collection of DMR breast thermograms 

 

To take advantage of training quality and avoid the overfitting issue, data augmentation is utilized to diversify 

the data. In Figure 4, an example of the outcomes of the enriched data is shown. 
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Figure 4: Results of data augmentation 

Enhanceddatais provided to train thesuggested model.The architectures of encoders and decoders make up the 

model, as Figure 1 shows. Finding regions of interest and displaying them is an efficient use of the model. 

Figure 5 displays the anticipated mark from our experiment, a ground truth mask, and a sample of the original 

BT. 

 

 

 

 

 

 
Figure 5:A sample of the experiment's findings showing ROI segmentation 

 

The suggested model can accurately separate breast thermograms according to the ROI segmentation findings. 

The generated segmented images may be used for BC  likelihood detection and classification based on 

abnormalities found in the ROI. Figure 6 shows the outcomes of ROI-based accurate segmentation. 
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Figure 6: Result of segmentation 

 

Additional examinations evaluate the suggested model's performance for accuracy, precision, IoU, and dice loss. 

The proposed model's precise performance is displayed in Figure 7 

 

 
Figure 7:The accuracy with which the proposed model operates 

 

The model's accuracy as a function of epoch count is displayed. The accuracy value steadily increases with the 

number of epochs. The model has reached its peak accuracy after 30 epochs. The suggested model's level of 

accuracy is seen in Figure 8. 

 

 
Figure 8:The correctness of the suggested model's performance 
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The model's accuracy is presented based on the total number of epochs. The accuracy value rises with an 

increasing number of epochs. The model achieves its highest level of accuracy 

after 30 epochs. Figure 9 shows the estimated model's IoU score.  

 

 
Figure 9:The suggested model's performance as measured by the IoU score 

 

The model's IoU is shown versus the total number of epochs. With an increase in epochs, the IoU value rises 

gradually. When the model reaches 30 epochs, it has already hit its maximum IoU. The dice loss performance of 

the proposed model is shown in Figure 10. 

 

 
Figure 10:The recommended model's efficacy in terms of dice loss 

 

A graph of the model's dice loss versus epoch count is displayed. A lower dice loss number denotes superior 

performance. The dice loss value steadily decreases with an increase in epochs. The model finds the least 

amount of dice loss after 30 epochs. Table 1 presents the convergent performance of the suggested model across 

all assessment measures. 

 

. 

Figure 11 shows the proposed method's performance based on many metrics that assess its suitability for ROI 

segmentation of brain thermograms.  
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Figure 11:The suggested model's performance 

 

At the last epoch of model execution, the proposed model's mean dice loss was found to be 0.0213. With a mean 

IoU score of 97.06%, the precision is 98.11% on average,andthe model has an accuracy of 98.63% on average. 

 

4.2 Performance Comparison 

We compare our ROISegNet model with other methods currently used for ROI segmentation on breast 

thermograms. For comparison, we employ models such as Atrous Convolution [55], VGG19 [56], ResNet50 

[57], and InceptioV3 [58]. Table 2 presents performance data for multiple models [59]. 

 

Table 2:Comparing performance 

Segmentation Model 

Performance (%) 

Mean 

Precision 

Mean IoU 

Score 

Mean 

Accuracy 

Mean Dice 

losse 

VGG19 90.4935 89.525 90.9731 0.023 

ResNet50 92.3403 91.352 92.8297 0.0226 

InceptionV3 94.2248 93.2164 94.7242 0.0221 

Atrous Convolution 96.1478 95.1188 96.6574 0.0217 

ROISegNet 98.1101 97.0623 98.6312 0.0208 

 

The performance of many different current models is compared with the proposed ROISegNet model. The mean 

dice loss comparison is displayed in Figure 12. 
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Figure 12:Comparing performance based on average dice loss 

 

The model's average dice loss is 0.023 for VGG19. InceptionV3, Atrous convolution, and ResNet50 had mean 

dice losses of 0.0226, 0.0221, and 0.0217, respectively. The suggested model, which is 0.0208, has the least dice 

loss. The results show that the recommended model outperforms the existing models in terms of mean dice loss. 

In Figure 13, The performance metrics of each model are compared: average precision, average IoU score, and 

average accuracy [60]. 
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Figure 13:comparing the performance Graph 
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The mean accuracy values of VGG19, ResNet50, InceptionV3, Atrous Convolution, and ROISegNet are 

90.49%, 92.11%, 94.22%, and 96.14%, respectively. The average IoU score for VGG19 is 89.52%, ResNet50 is 

91.35%, InceptionV3 is 93.21%, Atrous Convolution is 95.11%, and The average IoU score for ROISegNet is 

97.06%. The average accuracy values of VGG19, ResNet50, InceptionV3, Atrous Convolution, and ROISegNet 

are 90.97%, 92.82%, 94.72%, and 98.63%, respectively. The suggested model performed better in ROI 

segmentation of breast thermograms than other existing models, according to the experimental results. A 

decoder module that expands the model based on Atrous Convolution is one of the enhancements that are 

responsible for ROISegNet's speed boost. 

 

5. CONCLUSION AND FUTURE WORK  

Our recommendation was to use ROISegNet, a DL network, to segment the ROI from breast thermogram 

images automatically. Our method leverages efficiency in semantic segmentation by designing a decoder 

module and utilizing atrous convolution as part of the encoder. The encoder-decoder architecture, consisting of a 

customized decoder network and atrous convolution as part of the encoder, is the framework's foundation. The 

input breast thermal picture is effectively segmented to produce the breast area, or ROI, which aids in the 

automated identification of anomalies that may eventually result in breast cancer. We proposed an algorithm 

known as Intelligent Segmentation of Breast ROI (ISBROI). Our empirical investigation using the DMR-IR 

benchmark dataset showed that ROISegNet achieves the maximum accuracy of 98.63%, outperforming other 

models like VGG19, ResNet50, InceptionV3, and Atrous Convolution. Due to its concentration on ROI 

segmentation rather than breast cancer diagnosis, our methodology has a major disadvantage. In order to 

identify asymptotic patients, we want to build a unique grading system for breast abnormalities in our future 

study.   
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