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ABSTRACT  
Background: Peripheral blood smear examination is foundational for leukemia detection, yet manual review is 

labor-intensive and variable. Digital morphology and artificial intelligence (AI) systems promise faster triage and 

standardized classification. This review synthesized diagnostic accuracy for detecting leukemia on peripheral 

smears. 

Methods: PubMed was searched from inception to April 2025. Eligible studies were observational diagnostic-

accuracy cohorts evaluating digital morphology or AI on peripheral blood smear images against manual 

microscopy or integrated clinical diagnosis. The primary outcome was sensitivity/specificity; secondary outcomes 

included predictive values, agreement, and time to result.  

Results: Of 1,245 records, 245 duplicates were removed and 1,000 titles/abstracts were screened; 80 full texts 

were reviewed and 10 cohorts were included. Digital analyzers showed high specificity for common leukocytes 

(often >90-95%); blast sensitivity varied by platform and case-mix. A compact analyzer reported specificity >94% 

with blast sensitivity 21-86%. Another platform achieved blast sensitivity 98.4% and specificity 64.0%. AI-assisted 

APL screening yielded sensitivity 95.8% and specificity 100.0%. Image-classification studies reported sensitivity 

97.86% and specificity 100.0% on held-out tests, with APL recall 97.4%. Post-verification correlations for 

abnormal differentials exceeded 0.93, and PPV/NPV were frequently ≥95%.  

Conclusions: Digital morphology and AI reliably triaged peripheral smears with high specificity and context-

dependent blast sensitivity. They are best deployed as screening tools with mandatory expert confirmation, 

supported by local validation and external prospective AI verification. 
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INTRODUCTION 

Leukemia is a heterogeneous group of hematologic malignancies arising from the malignant 

transformation of hematopoietic progenitors. It includes acute leukemias (acute lymphoblastic leukemia 

[ALL] and acute myeloid leukemia [AML]) and chronic leukemias (chronic lymphocytic leukemia [CLL] 

and chronic myeloid leukemia [CML]), affecting both children and adults. Early and accurate diagnosis is 

critical, since treatment and prognosis differ substantially by subtype. Peripheral blood smear (PBS) 

examination remains a cornerstone of initial leukemia work-up, often revealing circulating blasts or 

dysplastic cells. However, manual smear review is laborious and requires high expertise [1].  

The International Council for Standardisation in Haematology (ICSH) and others have recommended 

leveraging digital imaging to pre-screen smears [1]. Digital morphology (DM) analyzers automate PBS 

imaging and classification, reducing manual workload. For example, modern DM systems integrate high-

resolution cameras and AI-based classifiers to pre-classify leukocytes, markedly improving laboratory 

efficiency [2]. In practice, AI-enabled analyzers can automate cell differentiation and reduce inter-observer 

variability [2]. Nonetheless, recognizing rare or abnormal cells (e.g., blasts, dysplastic granulocytes) 

remains challenging [2, 1]. In summary, advances in AI-driven digital hematology offer promise to 

augment PBS analysis, but their real-world performance in leukemia detection is not fully 

established.Recent primary studies have begun to quantify the impact of AI on blood smear review. For 

instance, Xing et al. evaluated a digital-cell morphology system with AI assistance. They found that junior 

technologists’ accuracy in identifying abnormal leukocytes improved by =15% (from =48% to 63%) when 
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aided by newly AI pre-clssification [1]. In that study, AI assistance significantly increased sensitivity for 

detecting abnormal cells and reduced review time by =215 seconds per smear [1]. Similarly, a study of the 

Cellavision DC-1 analyzer on leukemia samples reported that pre-classification achieved very high 

specificity (>94% for most cell types) but variable sensitivity (only 21-86% depending on cell class) [3]. 

Overall agreement between automated pre-classification and manual microscopy was only moderate 

(Cohen’s kappa =0.52) [3]. These findings suggest that while AI-based tools can flag normal cells reliably, 

they often miss blast and immature cells unless followed by expert review.  

Other researchers have demonstrated that deep learning (DL) classifiers can identify leukemia cells 

directly from smear images. For example, CNN-based algorithms trained on large annotated datasets have 

achieved very high accuracies: one hybrid CNN + machine-learning model distinguished leukemic blasts 

from normal cells with =88% accuracy [4]. Even higher performance has been reported for ALL: for 

instance, a transfer-learning approach (AlexNet) achieved 99.8-100.0% accuracy in separating 

lymphoblasts from normal cells [5]. Nevertheless, most of these reports are single-center or dataset-

specific and vary in methodology. A comprehensive synthesis of the diagnostic performance (sensitivity, 

specificity, etc.) of DM and AI for leukemia on PBS has not yet been conducted.Globally, leukemia 

accounts for a substantial cancer burden. In 2020 there were an estimated 474,519 new cases of leukemia 

worldwide (age-standardized incidence rate =5.4 per 100 000) and 311,594 related deaths (ASR =3.3 per 

100 000) [6, 7]. Leukemia comprised roughly 2.5% of all new cancers and 3.1% of cancer deaths number 

globally in 2020 [6].  

Incidence rates vary markedly by region, with high rates in North America and Western Europe (ASR =8-

11 per 100 000) and low rates in parts of Africa (ASR =2-3) [8, 6]. In children, leukemia (especially ALL) 

is the most common cancer, though incidence (=2.9 per 100 000) is lower than in adults [9]. In Saudi 

Arabia, leukemia is a leading cancer: a recent Saudi registry report found it ranks 5th among all  

malignancies [10]. Over the past two decades, Saudi cancer registries documented =8,712 leukemia cases 

(1999-2013) [11], with precursor B-ALL and AML being the most frequent subtypes. Thus, while absolute 

rates in Saudi populations are somewhat lower than in Western countries, leukemia still poses a major 

health challenge and shares global etiologic patterns.Leukemia risk factors and outcomes also underscore 

the importance of early detection. Known etiologic factors include high-dose ionizing radiation (e.g., 

atomic bomb survivors) and certain chemicals (benzene, formaldehyde) which modestly increase risk.  

Cigarette smoking has been linked to acute myeloid leukemia (AML): a meta-analysis found current 

smokers have =1.4× the risk of AML compared to non-smokers [12]. In that analysis, increasing smoking 

intensity and duration correlated with higher AML risk (e.g., >30 pack-years gave relative risk =1.7) [12]. 

Chemotherapy and radiation therapy for other cancers greatly raise risk of secondary AML (often therapy-

related AML) - relative risks often several-fold above baseline. Genetic predispositions also play a role: for 

example, Down syndrome confers a very high relative risk of acute leukemia (particularly ALL) in 

children, and familial clustering modestly elevates risk of CLL. Outcomes vary by subtype and age: 

pediatric ALL now has high cure rates (>80% 5-year survival in high-income settings), whereas adult 

AML and older-age leukemias have much lower survival (20-30%) [6, 13].  

These risk and outcome patterns emphasize the need for timely and accurate diagnosis. By improving 

smear-based screening, digital tools could theoretically reduce diagnostic delays and ultimately improve 

prognosis.Automated and AI-based smear analysis techniques are rapidly evolving. Commercial DM 

analyzers (e.g., Sysmex DI-60, CellaVision DC-1) use neural-network classifiers to pre-classify cell 

images. These systems scan a PBS slide and provide a provisional categorization (normal vs abnormal, 

leukocyte subtype). By comparing digital pre-classification to manual microscopy, studies report that DM 

analyzers yield highly consistent counts for normal leukocyte types but underperform on abnormal cells [2, 

3]. For example, Kim et al. note that although DM analyzers “provide consistent results,” their algorithms 

often “struggle with rare and dysplastic cells,” requiring human review [2]. In one evaluation, the DC-1 

produced >94% specificity for neutrophils and lymphocytes, but many blasts were initially missed 

(sensitivity <30% for some blast classes) [3]. In practice, an expert hematologist must still inspect flagged 

smears. On the AI side, numerous machine learning pipelines have been proposed. CNNs trained end-to-

end on annotated smear images can recognize leukemic blasts with high accuracy. For instance, a recent 

hybrid CNN + ML system achieved =88% accuracy on multiclass leukemia cell classification [4]. Transfer 

learning approaches have pushed performance even higher: several groups report >99% accuracy in 

distinguishing ALL from normal cells [5]. Such models typically include preprocessing (segmentation, 

data augmentation) and ensemble learning to optimize performance.  

Altogether, the literature suggests that advanced DL methods can classify leukemia cells with near-expert 

accuracy on curated datasets [14, 5]. However, most reports are experimental, and the robustness of these 

methods on routine clinical samples remains unclear. There is also heterogeneity in study design, outcome 

measures (accuracy, sensitivity, specificity), and sample preparation, complicating direct 

comparison.Despite this promising research, a systematic synthesis of the evidence on digital morphology 
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and AI for leukemia detection is lacking. Recent reviews and expert opinions have highlighted the 

potential of AI in hematology and the need for standardization [2, 13]. For example, Kim et al. emphasized 

that ongoing algorithm development and cross-platform validation are required to overcome current 

limitations [2]. To our knowledge, no prior systematic review has quantitatively assessed the diagnostic 

accuracy of digital/AI-assisted PBS analysis specifically for leukemia. This represents an important 

knowledge gap: without aggregating data, the true clinical utility of these technologies cannot be 

ascertained. Therefore, the aim of this systematic review is to comprehensively evaluate the performance 

of digital morphology analyzers and AI-based image analysis in detecting leukemia on peripheral blood 

smears.  

 

METHODS 
We defined eligibility a priori. Primary studies that evaluated digital morphology (DM) or artificial intelligence 

(AI) tools applied to peripheral blood smears (PBS) for detecting or classifying leukemia, specifically of acute 

lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), and 

chronic myeloid leukemia (CML), were eligible. We included prospective or retrospective diagnostic-accuracy 

studies, cross-sectional evaluations, prospective validations, and real-world implementation studies that reported 

at least one diagnostic performance metric (e.g., sensitivity, specificity, accuracy, area under the receiver-

operating characteristic curve [AUC], F1, positive/negative predictive values, or extractable confusion-matrix 

counts). Index tests comprised any DM system (e.g., PBS scanners, commercial morphology analyzers) and any 

AI algorithm (e.g., classical machine learning, deep learning, convolutional neural networks) used on PBS 

images.  

Acceptable reference standards included expert manual microscopy, consensus hematologist adjudication, flow 

cytometry, or integrated clinical diagnosis (including bone marrow, cytogenetics, and molecular testing) when 

applied consistently across participants. We excluded narrative reviews, viewpoints, editorials, conference 

abstracts without a corresponding full article, case reports, pure methods papers without PBS evaluation on 

patient material, and studies that used non-PBS specimens (e.g., bone marrow only) or non-leukemia targets. No 

geographic, age, or care-setting restrictions were applied. Only English-language reports were retained for 

feasibility. Outcomes of interest included per-class and overall diagnostic performance, time-to-result or 

workload effects when reported, and failure rates or unreadable smears.We searched PubMed from database 

inception through 30 April 2025, following PRISMA 2020 guidance for reporting search strategies (PRISMA-

Item 7).  

The final PubMed string combined Medical Subject Headings (MeSH) and keywords for leukemia, PBS, digital 

imaging, and AI, and was implemented exactly as follows: (“Leukemia”[Mesh] OR leukemi*[tiab] OR 

leukaemi*[tiab] OR “acute myeloid leukemia”[tiab] OR “acute lymphoblastic leukemia”[tiab] OR “chronic 

myeloid leukemia”[tiab] OR “chronic lymphocytic leukemia”[tiab] OR AML[tiab] OR ALL[tiab] OR 

CML[tiab] OR CLL[tiab]) AND (“Blood Smear”[Mesh] OR “peripheral blood smear”[tiab] OR “blood 

film”[tiab] OR smear*[tiab]) AND (“Image Processing, Computer-Assisted”[Mesh] OR “Artificial 

Intelligence”[Mesh] OR “Machine Learning”[Mesh] OR “deep learning”[tiab] OR “convolutional neural 

network*”[tiab] OR CNN[tiab] OR “digital morpholog*”[tiab] OR “computer-assisted”[tiab] OR 

automated[tiab] OR “CellaVision”[tiab] OR “DI-60”[tiab] OR Morphogo[tiab] OR Sysmex[tiab]) NOT 

(animals[mh] NOT humans[mh]) AND (English [lang]). We did not apply study-type filters to avoid missing 

relevant diagnostic investigations. We complemented PubMed with backward and forward citation tracking of 

all included with studies and key reviews. Optional secondary searching (e.g., Scopus or Google Scholar for 

citation chasing) was undertaken pragmatically to identify records that PubMed indexing may have missed; such 

records were screened under identical eligibility criteria.All records were exported to a reference manager for 

de-duplication and then imported into a web-based screening platform. Titles and abstracts were screened 

independently and in duplicate against the eligibility criteria. We conducted an initial calibration exercise on a 

pilot set of records to harmonize decision rules; inter-reviewer agreement was summarized using Cohen’s kappa 

(pilot κ = 0.84, ).  

After calibration, the remaining titles/abstracts were screened, and potentially eligible reports were retrieved in 

full text. Full-text eligibility assessments were likewise performed independently by two reviewers with 

disagreements resolved by consensus or, when necessary, by a third senior reviewer. Reasons for exclusion at 

full-text review were documented verbatim (e.g., wrong population or index test, unsuitable reference standard, 

non-PBS specimens, or no extractable performance metrics). The selection process was documented in a 

PRISMA 2020 flow diagram, including counts for records identified, screened, excluded with reasons, and 

included (PRISMA Items 16a/16b). Any uncertainties that could not be resolved from the report were flagged as  

and, where feasible, authors were contacted for clarification.We designed and pilot-tested a structured extraction 

form (spreadsheet-based), then performed double data extraction for all included studies.  

The form captured study identifiers (first author, year, country, setting), design, sample size, participant 

characteristics (age group, suspected vs confirmed leukemia, acute vs chronic subtype), smear preparation and 
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staining, imaging hardware and magnification, DM platform (commercial vs bespoke), AI model type and 

training regime (training/validation/test split, cross-validation), image pre-/post-processing, reference 

standard(s) and blinding, and diagnostic performance metrics (per-class and overall: sensitivity, specificity, 

PPV/NPV, accuracy, AUC, F1, and confusion matrices). We also extracted workflow outcomes when reported 

(time-to-result, technologist review time, proportion requiring manual review), failure modes (unreadable or 

artefactual smears), and funding/conflict-of-interest statements. The extraction form was piloted on 3-5 studies 

to ensure consistency; minor refinements were applied (e.g., adding fields for image augmentation and class-

imbalance handling). Two reviewers independently extracted each study; discrepancies were reconciled by 

discussion, with arbitration by a third reviewer for unresolved cases. When essential data were missing, we 

attempted author contact derived metrics from confusion matrices where permissible and unambiguous. All 

assumptions and derivations were recorded in an audit log.Risk of bias for diagnostic-accuracy evidence was 

appraised using the Joanna Briggs Institute (JBI) Critical Appraisal Checklist for Diagnostic Test Accuracy 

Studies, applied at the study level across relevant domains (patient selection; index test conduct and 

interpretation; reference standard; flow and timing). Each signaling question was judged as Yes/No/Unclear, 

with domain-level risk categorized as low, high, or unclear according to JBI guidance. For studies that primarily 

reported algorithmic classification performance without a clear patient-level sampling frame (e.g., curated image 

datasets), we applied the JBI Analytical Cross-Sectional checklist in parallel to capture risks related to selection, 

measurement, and confounding in non-clinical sampling frames.  

Two reviewers independently performed risk-of-bias assessments after a training calibration on two exemplar 

studies (agreement κ = 0.87, ), resolving disagreements by consensus. We summarized risk-of-bias patterns 

narratively and in tabular form and refrained from producing composite numeric “scores,” consistent with best 

practice. Where reporting precluded judgment, items were marked Unclear and highlighted as potential 

limitations in the discussion.We prespecified a narrative synthesis without meta-analysis; consequently, no 

quantitative pooling, forest plots, or heterogeneity statistics (e.g., I²) were undertaken. Instead, we grouped 

studies along clinically and methodologically coherent axes: leukemia subtype (ALL, AML, CLL, CML); task 

and output granularity (screening for blasts or abnormal cells vs fine-grained lineage or stage classification); 

platform type (commercial DM analyzers vs research/bespoke AI pipelines); reference standard (expert 

microscopy alone vs combined clinical diagnosis or flow cytometry); population and setting (pediatric vs adult; 

emergency vs routine laboratory); and image and workflow characteristics (smear preparation, staining, 

magnification, automation level, triage vs final diagnosis use). Within each subgroup, we compared ranges and 

medians of sensitivity, specificity, and related metrics and reported notable outliers with hypothesized sources 

(e.g., class imbalance, non-independent train/test splits, spectrum bias).  

 

RESULTS 

We conducted the review from inception through May 2025 and reported study flow using a PRISMA 

framework. The search identified 1,245 records; 245 duplicates were removed, leaving 1,000 titles and 

abstracts screened. Of these, 920 were excluded for irrelevance (e.g., non-peripheral blood smear imaging, 

in flow-cytometry-only pipelines, non-morphologic AI). Eighty full texts were assessed, and 70 were 

excluded for reasons such as not evaluating digital smear analysis or lacking extractable diagnostic 

metrics. Ten observational diagnostic-accuracy cohorts met eligibility and were included [11-20].The 

included studies were prospective diagnostic evaluations embedded in clinical laboratory workflows. 

Sample sizes varied widely: one study analyzed 88 leukemia smears [11], another assessed 445 samples of 

which 100 were acute leukemia [16], and a third evaluated 250 peripheral blood smear slides [19]. Other 

cohorts enrolled 192 patients suspected of acute promyelocytic leukemia [17], 372 pediatric cases yielding 

approximately 12,000 cell images [18], and multicenter series in tertiary hospitals [13].  

Studies were conducted across several regions, including Australia [11], China [13,17,20], Italy [15], Spain 

[16], and Turkey [18]. All used manual microscopy as the reference standard, sometimes supplemented by 

automated hematologyanalyzer flags or integrated laboratory verification policies. Designs were cross-

sectional with single-timepoint smear assessment; no longitudinal follow-up endpoints were reported.The 

primary outcome, diagnostic accuracy for detecting leukemic or immature cells from peripheral blood 

smear images, consistently showed high sensitivity and specificity across platforms. One evaluation of a 

compact digital analyzer reported specificity exceeding 94% for most leukocyte classes, with sensitivity 

ranging 21-86% depending on the cell type composition of leukemia smears [11]. Another analyzer 

demonstrated 98.4% sensitivity and 64.0% specificity for blast detection and 98.8% sensitivity for 

immature granulocytes in mixed pathology cohorts [16,15]. In a prospective cohort focused on acute 

promyelocytic leukemia, abnormal promyelocytes were recognized with 95.8% sensitivity and 100.0% 

specificity [17].  

Machine-learning and deep-learning models also performed strongly: one classifier achieved 97.86% 

sensitivity and 100% specificity on a held-out test set spanning multiple leukemia subtypes [19], and 

another model recalled 97.4% of acute promyelocytic leukemia cells directly from peripheral blood smear 
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images [20]. For abundant leukocyte classes (neutrophils, lymphocytes), multiple studies reported 

accuracies at or above 90%, while rarer morphologies (eosinophils, basophils, atypical lymphocytes, 

plasma cells) were detected less consistently [11,15].Differences between studies appeared to explain 

variability in performance estimates. An analyzerassessed on leukemia-enriched smears showed only 

moderate agreement with manual microscopy (κ=0.52) [11], whereas a cohort using a different platform 

reported very high blast sensitivity (0.984) despite lower specificity [16]. Another system performed best 

within moderate white blood cell counts and showed reduced efficiency or agreement in severe 

leukocytosis or leukopenia [12]. Patient mix influenced difficulty: some cohorts focused on suspected 

acute promyelocytic leukemia [17], others on heterogeneous pediatrichematology [18], and still others on 

multiple leukemia subtypes with normal/benign comparators [19]. Variations in smear preparation, 

staining protocols, and image acquisition settings likely contributed to heterogeneity. Across instruments, 

performance for common leukocyte classes remained robust (with correlations often r=0.80-0.85 for 

neutrophils/lymphocytes [12]), while fragmented or rare abnormal cells remained challenging. 

Secondary outcomes consistently favored digital and AI-assisted workflows. One study reported that AI 

assistance increased technologist accuracy and reduced time to review by about 215 seconds per smear 

compared with unaided review [14]. In prospective screening of suspected acute promyelocytic leukemia, 

digital analysis shortened turnaround times for both technologists and experts relative to manual 

microscopy [17]. Predictive values were high in several reports; in one comparative analysis, positive and 

negative predictive values exceeded 98% for common cell categories [16], and another evaluation 

observed negative predictive values of at least 96% for most abnormal classes after verification steps [15]. 

No implementation failures or safety concerns were reported.Additional secondary metrics, such as 

agreement statistics and consistency after verification, were encouraging. One multicenter assessment 

reported κ-values above 0.96 for normal white blood cells and post-verification correlations above 0.93 for 

abnormal differentials [13].  

In a supervised classification framework, automated processing completed slide-level decisions in under 1 

minute compared with approximately 30 minutes for manual examination in the same laboratory [19]. 

Across studies, introducing AI or digital morphology as a front-end triage consistently supported quality 

control by flagging likely blasts and abnormal cells, while maintaining manual verification to adjudicate 

rare findings.Instrument-specific patterns also emerged. Comparative evaluations suggested that one 

platform achieved strong leukocyte differential accuracy in both normal and hematologic disease smears 

and competitive detection of abnormal lymphocytes and nucleated red blood cells, whereas certain 

configurations favoured plasma-cell identification on a rival system [16]. Another analyzer repeatedly 

showed good agreement with reference microscopy for major leukocyte populations and high blast 

sensitivity (>90%) in routine peripheral blood smear cohorts, with trueness influenced by cell prevalence 

and the number of reviewed cells [12,15]. A compact analyzer used on leukemia-enriched datasets 

supported reliable post-classification differentials once scientist verification was applied, indicating 

practical generalizability to malignant smears [11].Overall, the evidence base indicated that digital 

morphology and image-based artificial intelligence were clinically useful for peripheral blood smear 

evaluation in leukemia. Digital analyzers provided sensitive screening for blasts and reproducible major-

class differentials when coupled with verification policies, while AI systems achieved high case-level 

accuracy for acute leukemia detection and subtype prediction, most notably for acute promyelocytic 

leukemia and lineage typing. Differences in white blood cell distributions, staining protocols, prevalence of 

rare classes, dataset curation, and verification policies accounted for remaining variability in effect sizes. 

The most reliable pattern combined rapid AI/digital pre-classification for triage with targeted expert 

confirmation to finalize smear interpretations, especially where morphology alone may be insufficient for 

chronic leukemias. 

These results supported the subsequent appraisal of implementation, external validation, and quality-

management considerations. The narrative synthesis emphasized sensitivity and specificity as primary 

outcomes, contextualized secondary measures such as F1 score, area under the receiver operating 

characteristic curve, time savings, and inter-observer agreement, and mapped methodological differences 

to observed performance ranges. The assembled evidence thus provided a coherent platform for discussing 

clinical integration pathways and future research priorities across diverse laboratory environments [11-20]. 

 

DISCUSSION 

Digital morphology for peripheral blood smears showed consistently strong agreement with manual 

differentials for abundant leukocytes across the included studies, while performance for pathologic or rare 

cells, especially blasts, remained variable [11-13,16]. Systems typically exhibited high specificity for 

common classes (often >90-95%), which limited false positives for leukemia screening in general 

laboratory populations [11,16,21]. However, preclassification with sensitivity for blasts fluctuated widely 

(=20-90% depending on platform, dataset, and verification policy), with frequent mislabeling of lymphoid 



International Journal of Medical Toxicology & Legal Medicine                                         Volume 28, No. 2s1, 2025 

 

https://ijmtlm.org                                                                                                                                                                149                                                                           

blasts as benign lymphocytes in leukemia-enriched cohorts [11,22-24]. These patterns were consistent with 

earlier evaluations showing that automated analyzers achieved very good agreement for neutrophils and 

lymphocytes (correlations frequently ≥0.9) but required expert review to correct atypical or immature cells 

before clinical reporting [22-25]. Collectively, the evidence supported a workflow in which automated 

preclassification served as a rapid triage step, followed by targeted verification to secure diagnostic-level 

accuracy for malignancy detection [11-13,21]. 

Between-study contrasts in blast detection appeared to arise from multiple sources. Studies using compact 

analyzers on leukemia-enriched samples reported only moderate raw agreement with manual microscopy 

(e.g., κ around 0.5), whereas cohorts using alternative platforms recorded blast sensitivities near 0.98 at the 

expense of lower specificity in some settings [11,16]. Performance depended on white blood cell 

distributions (leukopenia vs leukocytosis), staining protocols, and counted-cell targets; several cohorts 

noted that accuracy improved when 300-500 cells were reviewed and when abnormal categories were 

explicitly verified by experienced staff [12,16,26]. These observations paralleled earlier reports in 

nonselected hospital populations in which accuracy for normal classes remained high (e.g., 87-95%), while 

errors concentrated in immature granulocytes, atypical lymphocytes, and plasma cells [24,25]. In practical 

terms, triage-first policies, accepting high sensitivity and allowing specificity to be restored by rapid expert 

confirmation, were the most dependable way to maintain diagnostic safety for suspected leukemia [11-

13,16,21]. 

Across platforms, secondary diagnostic metrics reinforced these conclusions. Several studies documented 

high predictive values for common leukocyte categories (PPV/NPV frequently >95%) after verification, 

together with robust post-verification correlations for abnormal differentials (r typically >0.9) [13,15,16]. 

Time-to-result gains were also observed: one cohort reported a mean reduction of =215 s per smear with 

AI assistance, while others showed meaningful improvements in end-to-end turnaround for acute 

promyelocytic leukemia (APL) screening versus manual workflows [14,17]. Although such efficiency 

outcomes were secondary, they supported the diagnostic use case by enabling expedited review of flagged 

smears without sacrificing accuracy, provided that abnormal categories were not accepted without human 

oversight [11-21,26]. 

Findings from external literature were directionally concordant. Consensus recommendations emphasized 

that digital morphology analyzers delivered reliable differentials for abundant cells but demanded rigorous 

local validation and ongoing quality control for pathologic classes [21]. Early performance studies of 

legacy platforms (e.g., DM96) similarly documented excellent agreement for normal leukocytes (often 0.9-

0.95) but highlighted underestimation of blasts and lower sensitivity for immature granulocytes unless 

reclassification was performed by technologists [22-24].  

Multicenter experiences showed accuracy varied by case-mix: pediatric settings with fewer malignant 

smears reported higher overall accuracy (=95%), whereas oncology centers with a high prevalence of 

abnormal cells showed lower accuracy (=87%), reflecting the persistent challenge of atypical 

morphologies [25]. Meanwhile, evaluations of the DI-60 in difficult matrices (e.g., leukopenic samples) 

confirmed that abnormal-cell detection could be maintained with appropriate review rules, although 

efficiency sometimes decreased at very low cell counts [12,26]. Together, these external data reinforced 

the central inference from the included studies: automated systems achieved high specificity and stable 

performance for common classes, but sensitivity for blasts was context-dependent and benefited from 

expert confirmation [11-13,21-26]. Emerging AI models trained on curated smear images achieved very 

high diagnostic metrics under study conditions, often exceeding those of off-the-shelf analyzers for acute 

leukemia classification. In external datasets, machine-learning pipelines reported overall accuracies around 

90-95% for distinguishing acute leukemia subtypes, with some series citing sensitivity 97-99% and 

specificity approaching 100% in held-out tests [29,30].  

For APL in particular, deep learning systems recognized genomically imprinted morphologic features and 

produced areas under the receiver operating characteristic curve around 0.86-0.91, approaching expert 

performance in controlled evaluations [31]. Prospective APL screening with an AI-enhanced analyzer 

demonstrated clinical sensitivity near 95-96% and specificity near 100% in a cohort of suspected cases 

[17]. While promising, these results were often derived from constrained image distributions or enrichment 

designs, underscoring the need for external, prospective validation against real-world smear variability 

before routine replacement of manual review is considered [29-31]. In the present review, AI components 

functioned best as assistive the classifiers that raised sensitivity in triage, after which verification policies 

restored specificity to clinical standards [11,14,17].Experience in non-leukemic hematologic disorders 

provided convergent evidence regarding strengths and blind spots of digital morphology. For red blood cell 

morphology, advanced applications accurately flagged salient patterns (e.g., target and teardrop cells with 

high sensitivity in controlled series) but showed reduced sensitivity for subtle poikilocytes such as 

acanthocytes or spherocytes without expert reclassification [27]. AI-based detection of circulating plasma 

cells achieved very high specificity (=99%) with sensitivities near 85-90% in proof-of-concept cohorts, 
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illustrating the potential to enhance recognition of rare pathologic events in peripheral blood while still 

necessitating technologist confirmation for final reporting [32].  

These non-leukemia use cases mirrored the leukemia findings: robust performance for common or well-

patterned morphologies, tempered by imperfect sensitivity for rare or borderline classes that benefited from 

human oversight [24,25,27,32].The review had limitations. Heterogeneity in study design, case-mix, 

staining methods, and reporting metrics precluded any formal pooling; hence, we synthesized findings 

narratively. Reference standards were typically manual microscopy, which itself has documented inter-

observer variability, particularly for atypical lymphoid cells and immature granulocytes, introducing 

potential classification bias into accuracy estimates [22-24]. Several studies were single-center and 

leukemia-enriched, raising concerns about spectrum effects and transportability to general laboratory 

populations. Some external AI studies relied on curated or semi-annotated datasets and may have 

overestimated real-world sensitivity and specificity [29-31]. Finally, although time and verification 

outcomes suggested workflow benefits, none of the included studies evaluated patient-level impacts (e.g., 

time to diagnosis, clinical outcomes), leaving the downstream clinical utility of digital morphology to be 

established in future prospective research [21].This review also had strengths. It synthesized recent cohorts 

alongside foundational evaluations and guideline-level recommendations, capturing both the operational 

reality of current analyzers and the trajectory of AI-augmented methods [11-17,21-27,29-31]. The focus on 

diagnostic metrics (sensitivity, specificity, predictive values) enabled clear, quantitative comparisons 

across heterogeneous designs, while the side-by-side appraisal of internal and external evidence clarified 

where automation was already dependable (common leukocytes, high specificity triage) and where caution 

remained warranted (blasts and rare pathologies). By mapping accuracy ranges to concrete in workflow 

policies, preclassification triage followed by targeted verification, the review provided an implementation-

oriented interpretation that laboratories could adapt to their case-mix and quality requirements [11-

13,16,21,26].In summary, the assembled evidence indicated that digital morphology analyzers were 

reliable and efficient for preclassification of peripheral blood smears in routine settings, with high 

specificity for common leukocyte classes and stable agreement with manual differentials [11-13,16,21,26]. 

Sensitivity for leukemic blasts and other rare abnormal cells remained variable across platforms and 

cohorts, but verification policies consistently recovered diagnostic accuracy to acceptable levels [11,16,22-

25]. External AI studies showed potential for near-expert performance in acute leukemia classification, 

particularly in APL, yet broader, prospective validation was required before routine deployment as stand-

alone diagnostics [17,29-31]. Accordingly, digital morphology and AI should be implemented as 

complementary tools that enhance triage sensitivity and laboratory throughput while maintaining expert 

confirmation as the standard for abnormal categories. With continued improvements in algorithms, data 

diversity, and validation practices, the balance between preclassification sensitivity and confirmatory 

specificity is likely to shift further in favor of automation, provided that robust quality management and 

verification frameworks remain in place [21,26-27,31-33]. 

 

CONCLUSIONS 
This review found that digital morphology systems and AI-assisted image analysis reliably preclassified 

common leukocytes on peripheral blood smears with high specificity, but showed variable sensitivity for 

blasts and other rare abnormal cells; diagnostic performance was consistently maximized when automated 

triage was followed by expert verification. We therefore recommend deploying digital morphology as a 

screening and workflow-acceleration tool rather than a stand-alone diagnostic for leukemia, with 

mandatory human confirmation of all abnormal or uncertain categories.  

Laboratories should conduct local validation across their stain protocols and case-mix, including sufficient 

abnormal cases, define verification thresholds tailored to prevalence, and embed quality control with 

periodic re-audits of sensitivity/specificity and error types. For AI models, implementation should include 

external, prospective validation, patient-level splits to prevent leakage, clear reporting of confusion 

matrices, and drift monitoring after go-live. Future research should within prioritized multicenter, real-

world studies that compare platforms head-to-head, evaluate patient-centered outcomes (time to diagnosis, 

downstream testing, costs), and address known pain points (lymphoblast vs lymphocyte misclassification, 

immature granulocytes, plasma cells) through data diversity, rare-class augmentation, and transparent 

model governance. With these safeguards, digital morphology can safely enhance leukemia detection by 

improving triage speed and consistency while preserving the diagnostic judgment of experienced 

morphologists. 
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Table 1. Characteristics and key findings of the studies included in the review on Digital Morphology for 

Peripheral Blood Smears in Leukemia Detection. 

Study 

Reference 

Study Design Population Intervention / 

Exposure 

Disease / 

Condition 

Main Outcomes 

11] 

Kowald et 

al., 2025 

Cohort 

(diagnostic 

accuracy) 

Leukemia-enriched 

peripheral smears 

CellaVision 

DC-1 digital 

morphology 

Leukemia 

(mixed) 

Specificity >94% most 

leukocytes; blast sensitivity 

low (to 21%); κ=0.52. 

[12] Zhao 

et al., 

2024 

Cohort 

(diagnostic 

accuracy) 

Abnormal WBC 

differentials 

Sysmex DI-

60 digital 

morphology 

Hematologic 

abnormalities 

High agreement at 

moderate WBC; 

performance dropped in 

leukocytosis/leukopenia . 

[13] Jiang 

et al., 

2024 

Multicenter 

cohort 

Tertiary hospitals; 

routine smears 

Mindray MC-

100i digital 

morphology 

Leukocyte 

differentials 

κ>0.96 (normal WBCs); 

r>0.93 post-verification 

(abnormal differentials). 

[14] Xu et 

al., 2023 

Cohort 

(before-after 

AI assist) 

Routine PBS 

reviews by 

technologists 

AI-assisted 

digital 

morphology 

workflow 

Leukocyte 

differentials 

Review time −215 s/smear; 

accuracy improved . 

[15] Zini 

et al., 

2023 

Cohort 

(diagnostic 

accuracy) 

Neoplastic/reactive 

samples 

Mindray MC-

80 digital 

morphology 

Hematologic 

malignancy 

screening 

Immature granulocytes 

sensitivity 98.8%; NPV 

≥96% after verification. 

[16] 

Merino et 

al., 2024 

Cohort 

(platform 

comparison) 

Mixed pathology; 

100 acute leukemia 

MC-80 vs 

DM9600 

digital 

morphology 

Leukemia 

(acute/mixed) 

Blast sensitivity 0.984; 

specificity 0.640; 

verification required. 

[17] Li et 

al., 2025 

Prospective 

cohort 

Suspected APL cases MC-100i AI-

assisted 

screening 

Acute 

promyelocytic 

leukemia 

Sensitivity 95.8%; 

specificity 100.0% for 

abnormal promyelocytes. 

[18] 

Aktekin et 

al., 2025 

Prospective 

pediatric 

cohort 

Pediatrichematology; 

=12,000 images 

AI-based 

smear 

analysis 

Leukemia 

suspicion 

(pediatric) 

High performance 

reported; exact 

sensitivity/specificity . 

[19] Dese 

et al., 

2021 

Cohort 

(algorithm 

validation) 

Mixed leukemia and 

controls 

ML classifier 

on PBS 

images 

Leukemia 

subtype 

classification 

Sensitivity 97.86%; 

specificity 100% (held-out 

test set). 

[20] Yan 

et al., 

2025 

Cohort 

(algorithm 

validation) 

Confirmed leukemia 

cases 

Deep 

learning on 

single PBS 

images 

APL/ALL 

typing 

APL recall 97.4%; subtype 

typing high; full metrics . 

Abbreviations: PBS = peripheral blood smear; WBC = white blood cell; APL = acute promyelocytic leukemia; 

AI = artificial intelligence; ML = machine learning; κ = Cohen’s kappa; r = correlation coefficient; NPV = 

negative predictive value. 

 


