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ABSTRACT

Background: Peripheral blood smear examination is foundational for leukemia detection, yet manual review is
labor-intensive and variable. Digital morphology and artificial intelligence (Al) systems promise faster triage and
standardized classification. This review synthesized diagnostic accuracy for detecting leukemia on peripheral
smears.

Methods: PubMed was searched from inception to April 2025. Eligible studies were observational diagnostic-
accuracy cohorts evaluating digital morphology or Al on peripheral blood smear images against manual
microscopy or integrated clinical diagnosis. The primary outcome was sensitivity/specificity; secondary outcomes
included predictive values, agreement, and time to result.

Results: Of 1,245 records, 245 duplicates were removed and 1,000 titles/abstracts were screened; 80 full texts
were reviewed and 10 cohorts were included. Digital analyzers showed high specificity for common leukocytes
(often >90-95%); blast sensitivity varied by platform and case-mix. A compact analyzer reported specificity >94%
with blast sensitivity 21-86%. Another platform achieved blast sensitivity 98.4% and specificity 64.0%. Al-assisted
APL screening yielded sensitivity 95.8% and specificity 100.0%. Image-classification studies reported sensitivity
97.86% and specificity 100.0% on held-out tests, with APL recall 97.4%. Post-verification correlations for
abnormal differentials exceeded 0.93, and PPV/NPV were frequently >95%.

Conclusions: Digital morphology and Al reliably triaged peripheral smears with high specificity and context-
dependent blast sensitivity. They are best deployed as screening tools with mandatory expert confirmation,
supported by local validation and external prospective Al verification.

Keywords: Leukemia, Peripheral blood smear, Digital morphology, Artificial intelligence, Diagnostic accuracy,
Sensitivity and specificity

INTRODUCTION

Leukemia is a heterogeneous group of hematologic malignancies arising from the malignant
transformation of hematopoietic progenitors. It includes acute leukemias (acute lymphoblastic leukemia
[ALL] and acute myeloid leukemia [AML]) and chronic leukemias (chronic lymphocytic leukemia [CLL]
and chronic myeloid leukemia [CMLY]), affecting both children and adults. Early and accurate diagnosis is
critical, since treatment and prognosis differ substantially by subtype. Peripheral blood smear (PBS)
examination remains a cornerstone of initial leukemia work-up, often revealing circulating blasts or
dysplastic cells. However, manual smear review is laborious and requires high expertise [1].

The International Council for Standardisation in Haematology (ICSH) and others have recommended
leveraging digital imaging to pre-screen smears [1]. Digital morphology (DM) analyzers automate PBS
imaging and classification, reducing manual workload. For example, modern DM systems integrate high-
resolution cameras and Al-based classifiers to pre-classify leukocytes, markedly improving laboratory
efficiency [2]. In practice, Al-enabled analyzers can automate cell differentiation and reduce inter-observer
variability [2]. Nonetheless, recognizing rare or abnormal cells (e.g., blasts, dysplastic granulocytes)
remains challenging [2, 1]. In summary, advances in Al-driven digital hematology offer promise to
augment PBS analysis, but their real-world performance in leukemia detection is not fully
established.Recent primary studies have begun to quantify the impact of Al on blood smear review. For
instance, Xing et al. evaluated a digital-cell morphology system with Al assistance. They found that junior
technologists’ accuracy in identifying abnormal leukocytes improved by =15% (from =48% to 63%) when
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aided by newly Al pre-clssification [1]. In that study, Al assistance significantly increased sensitivity for
detecting abnormal cells and reduced review time by =215 seconds per smear [1]. Similarly, a study of the
Cellavision DC-1 analyzer on leukemia samples reported that pre-classification achieved very high
specificity (>94% for most cell types) but variable sensitivity (only 21-86% depending on cell class) [3].
Overall agreement between automated pre-classification and manual microscopy was only moderate
(Cohen’s kappa =0.52) [3]. These findings suggest that while Al-based tools can flag normal cells reliably,
they often miss blast and immature cells unless followed by expert review.

Other researchers have demonstrated that deep learning (DL) classifiers can identify leukemia cells
directly from smear images. For example, CNN-based algorithms trained on large annotated datasets have
achieved very high accuracies: one hybrid CNN + machine-learning model distinguished leukemic blasts
from normal cells with =88% accuracy [4]. Even higher performance has been reported for ALL: for
instance, a transfer-learning approach (AlexNet) achieved 99.8-100.0% accuracy in separating
lymphoblasts from normal cells [5]. Nevertheless, most of these reports are single-center or dataset-
specific and vary in methodology. A comprehensive synthesis of the diagnostic performance (sensitivity,
specificity, etc.) of DM and Al for leukemia on PBS has not yet been conducted.Globally, leukemia
accounts for a substantial cancer burden. In 2020 there were an estimated 474,519 new cases of leukemia
worldwide (age-standardized incidence rate =5.4 per 100 000) and 311,594 related deaths (ASR =3.3 per
100 000) [6, 7]. Leukemia comprised roughly 2.5% of all new cancers and 3.1% of cancer deaths number
globally in 2020 [6].

Incidence rates vary markedly by region, with high rates in North America and Western Europe (ASR =8-
11 per 100 000) and low rates in parts of Africa (ASR =2-3) [8, 6]. In children, leukemia (especially ALL)
is the most common cancer, though incidence (=2.9 per 100 000) is lower than in adults [9]. In Saudi
Arabia, leukemia is a leading cancer: a recent Saudi registry report found it ranks 5th among all
malignancies [10]. Over the past two decades, Saudi cancer registries documented =8,712 leukemia cases
(1999-2013) [11], with precursor B-ALL and AML being the most frequent subtypes. Thus, while absolute
rates in Saudi populations are somewhat lower than in Western countries, leukemia still poses a major
health challenge and shares global etiologic patterns.Leukemia risk factors and outcomes also underscore
the importance of early detection. Known etiologic factors include high-dose ionizing radiation (e.g.,
atomic bomb survivors) and certain chemicals (benzene, formaldehyde) which modestly increase risk.
Cigarette smoking has been linked to acute myeloid leukemia (AML): a meta-analysis found current
smokers have =1.4x the risk of AML compared to non-smokers [12]. In that analysis, increasing smoking
intensity and duration correlated with higher AML risk (e.g., >30 pack-years gave relative risk =1.7) [12].
Chemotherapy and radiation therapy for other cancers greatly raise risk of secondary AML (often therapy-
related AML) - relative risks often several-fold above baseline. Genetic predispositions also play a role: for
example, Down syndrome confers a very high relative risk of acute leukemia (particularly ALL) in
children, and familial clustering modestly elevates risk of CLL. Outcomes vary by subtype and age:
pediatric ALL now has high cure rates (>80% 5-year survival in high-income settings), whereas adult
AML and older-age leukemias have much lower survival (20-30%) [6, 13].

These risk and outcome patterns emphasize the need for timely and accurate diagnosis. By improving
smear-based screening, digital tools could theoretically reduce diagnostic delays and ultimately improve
prognosis.Automated and Al-based smear analysis techniques are rapidly evolving. Commercial DM
analyzers (e.g., Sysmex DI-60, CellaVision DC-1) use neural-network classifiers to pre-classify cell
images. These systems scan a PBS slide and provide a provisional categorization (normal vs abnormal,
leukocyte subtype). By comparing digital pre-classification to manual microscopy, studies report that DM
analyzers yield highly consistent counts for normal leukocyte types but underperform on abnormal cells [2,
3]. For example, Kim et al. note that although DM analyzers “provide consistent results,” their algorithms
often “struggle with rare and dysplastic cells,” requiring human review [2]. In one evaluation, the DC-1
produced >94% specificity for neutrophils and lymphocytes, but many blasts were initially missed
(sensitivity <30% for some blast classes) [3]. In practice, an expert hematologist must still inspect flagged
smears. On the Al side, numerous machine learning pipelines have been proposed. CNNs trained end-to-
end on annotated smear images can recognize leukemic blasts with high accuracy. For instance, a recent
hybrid CNN + ML system achieved =88% accuracy on multiclass leukemia cell classification [4]. Transfer
learning approaches have pushed performance even higher: several groups report >99% accuracy in
distinguishing ALL from normal cells [5]. Such models typically include preprocessing (segmentation,
data augmentation) and ensemble learning to optimize performance.

Altogether, the literature suggests that advanced DL methods can classify leukemia cells with near-expert
accuracy on curated datasets [14, 5]. However, most reports are experimental, and the robustness of these
methods on routine clinical samples remains unclear. There is also heterogeneity in study design, outcome
measures  (accuracy, sensitivity, specificity), and sample preparation, complicating direct
comparison.Despite this promising research, a systematic synthesis of the evidence on digital morphology
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and Al for leukemia detection is lacking. Recent reviews and expert opinions have highlighted the
potential of Al in hematology and the need for standardization [2, 13]. For example, Kim et al. emphasized
that ongoing algorithm development and cross-platform validation are required to overcome current
limitations [2]. To our knowledge, no prior systematic review has quantitatively assessed the diagnostic
accuracy of digital/Al-assisted PBS analysis specifically for leukemia. This represents an important
knowledge gap: without aggregating data, the true clinical utility of these technologies cannot be
ascertained. Therefore, the aim of this systematic review is to comprehensively evaluate the performance
of digital morphology analyzers and Al-based image analysis in detecting leukemia on peripheral blood
smears.

METHODS

We defined eligibility a priori. Primary studies that evaluated digital morphology (DM) or artificial intelligence
(Al tools applied to peripheral blood smears (PBS) for detecting or classifying leukemia, specifically of acute
lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), and
chronic myeloid leukemia (CML), were eligible. We included prospective or retrospective diagnostic-accuracy
studies, cross-sectional evaluations, prospective validations, and real-world implementation studies that reported
at least one diagnostic performance metric (e.g., sensitivity, specificity, accuracy, area under the receiver-
operating characteristic curve [AUC], F1, positive/negative predictive values, or extractable confusion-matrix
counts). Index tests comprised any DM system (e.g., PBS scanners, commercial morphology analyzers) and any
Al algorithm (e.g., classical machine learning, deep learning, convolutional neural networks) used on PBS
images.

Acceptable reference standards included expert manual microscopy, consensus hematologist adjudication, flow
cytometry, or integrated clinical diagnosis (including bone marrow, cytogenetics, and molecular testing) when
applied consistently across participants. We excluded narrative reviews, viewpoints, editorials, conference
abstracts without a corresponding full article, case reports, pure methods papers without PBS evaluation on
patient material, and studies that used non-PBS specimens (e.g., bone marrow only) or non-leukemia targets. No
geographic, age, or care-setting restrictions were applied. Only English-language reports were retained for
feasibility. Outcomes of interest included per-class and overall diagnostic performance, time-to-result or
workload effects when reported, and failure rates or unreadable smears.We searched PubMed from database
inception through 30 April 2025, following PRISMA 2020 guidance for reporting search strategies (PRISMA-
Item 7).

The final PubMed string combined Medical Subject Headings (MeSH) and keywords for leukemia, PBS, digital
imaging, and Al, and was implemented exactly as follows: (“Leukemia”[Mesh] OR leukemi*[tiab] OR
leukaemi*[tiab] OR “acute myeloid leukemia”[tiab] OR “acute lymphoblastic leukemia”[tiab] OR “‘chronic
myeloid leukemia”[tiab] OR “chronic lymphocytic leukemia”[tiab] OR AML[tiab] OR ALL[tiab] OR
CML[tiab] OR CLL[tiab]) AND (“Blood Smear’[Mesh] OR “peripheral blood smear”[tiab] OR “blood
film”[tiab] OR smear*[tiab]) AND (“Image Processing, Computer-Assisted”[Mesh] OR “Artificial
Intelligence”[Mesh] OR “Machine Learning”[Mesh] OR “deep learning”[tiab] OR “convolutional neural
network*”[tiab] OR CNNJ[tiab] OR “digital morpholog*”[tiab] OR “computer-assisted”’[tiab] OR
automated[tiab] OR “CellaVision”[tiab] OR “DI-60"[tiab] OR Morphogo[tiab] OR Sysmex]tiab]) NOT
(animals[mh] NOT humans[mh]) AND (English [lang]). We did not apply study-type filters to avoid missing
relevant diagnostic investigations. We complemented PubMed with backward and forward citation tracking of
all included with studies and key reviews. Optional secondary searching (e.g., Scopus or Google Scholar for
citation chasing) was undertaken pragmatically to identify records that PubMed indexing may have missed; such
records were screened under identical eligibility criteria.All records were exported to a reference manager for
de-duplication and then imported into a web-based screening platform. Titles and abstracts were screened
independently and in duplicate against the eligibility criteria. We conducted an initial calibration exercise on a
pilot set of records to harmonize decision rules; inter-reviewer agreement was summarized using Cohen’s kappa
(pilot k= 0.84, ).

After calibration, the remaining titles/abstracts were screened, and potentially eligible reports were retrieved in
full text. Full-text eligibility assessments were likewise performed independently by two reviewers with
disagreements resolved by consensus or, when necessary, by a third senior reviewer. Reasons for exclusion at
full-text review were documented verbatim (e.g., wrong population or index test, unsuitable reference standard,
non-PBS specimens, or no extractable performance metrics). The selection process was documented in a
PRISMA 2020 flow diagram, including counts for records identified, screened, excluded with reasons, and
included (PRISMA Items 16a/16b). Any uncertainties that could not be resolved from the report were flagged as
and, where feasible, authors were contacted for clarification.We designed and pilot-tested a structured extraction
form (spreadsheet-based), then performed double data extraction for all included studies.

The form captured study identifiers (first author, year, country, setting), design, sample size, participant
characteristics (age group, suspected vs confirmed leukemia, acute vs chronic subtype), smear preparation and
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staining, imaging hardware and magnification, DM platform (commercial vs bespoke), Al model type and
training regime (training/validation/test split, cross-validation), image pre-/post-processing, reference
standard(s) and blinding, and diagnostic performance metrics (per-class and overall: sensitivity, specificity,
PPV/NPV, accuracy, AUC, F1, and confusion matrices). We also extracted workflow outcomes when reported
(time-to-result, technologist review time, proportion requiring manual review), failure modes (unreadable or
artefactual smears), and funding/conflict-of-interest statements. The extraction form was piloted on 3-5 studies
to ensure consistency; minor refinements were applied (e.g., adding fields for image augmentation and class-
imbalance handling). Two reviewers independently extracted each study; discrepancies were reconciled by
discussion, with arbitration by a third reviewer for unresolved cases. When essential data were missing, we
attempted author contact derived metrics from confusion matrices where permissible and unambiguous. All
assumptions and derivations were recorded in an audit log.Risk of bias for diagnostic-accuracy evidence was
appraised using the Joanna Briggs Institute (JBI) Critical Appraisal Checklist for Diagnostic Test Accuracy
Studies, applied at the study level across relevant domains (patient selection; index test conduct and
interpretation; reference standard; flow and timing). Each signaling question was judged as Yes/No/Unclear,
with domain-level risk categorized as low, high, or unclear according to JBI guidance. For studies that primarily
reported algorithmic classification performance without a clear patient-level sampling frame (e.g., curated image
datasets), we applied the JBI Analytical Cross-Sectional checklist in parallel to capture risks related to selection,
measurement, and confounding in non-clinical sampling frames.

Two reviewers independently performed risk-of-bias assessments after a training calibration on two exemplar
studies (agreement k = 0.87, ), resolving disagreements by consensus. We summarized risk-of-bias patterns
narratively and in tabular form and refrained from producing composite numeric “scores,” consistent with best
practice. Where reporting precluded judgment, items were marked Unclear and highlighted as potential
limitations in the discussion.We prespecified a narrative synthesis without meta-analysis; consequently, no
quantitative pooling, forest plots, or heterogeneity statistics (e.g., 12) were undertaken. Instead, we grouped
studies along clinically and methodologically coherent axes: leukemia subtype (ALL, AML, CLL, CML); task
and output granularity (screening for blasts or abnormal cells vs fine-grained lineage or stage classification);
platform type (commercial DM analyzers vs research/bespoke Al pipelines); reference standard (expert
microscopy alone vs combined clinical diagnosis or flow cytometry); population and setting (pediatric vs adult;
emergency vs routine laboratory); and image and workflow characteristics (smear preparation, staining,
magnification, automation level, triage vs final diagnosis use). Within each subgroup, we compared ranges and
medians of sensitivity, specificity, and related metrics and reported notable outliers with hypothesized sources
(e.g., class imbalance, non-independent train/test splits, spectrum bias).

RESULTS

We conducted the review from inception through May 2025 and reported study flow using a PRISMA
framework. The search identified 1,245 records; 245 duplicates were removed, leaving 1,000 titles and
abstracts screened. Of these, 920 were excluded for irrelevance (e.g., non-peripheral blood smear imaging,
in flow-cytometry-only pipelines, non-morphologic Al). Eighty full texts were assessed, and 70 were
excluded for reasons such as not evaluating digital smear analysis or lacking extractable diagnostic
metrics. Ten observational diagnostic-accuracy cohorts met eligibility and were included [11-20].The
included studies were prospective diagnostic evaluations embedded in clinical laboratory workflows.
Sample sizes varied widely: one study analyzed 88 leukemia smears [11], another assessed 445 samples of
which 100 were acute leukemia [16], and a third evaluated 250 peripheral blood smear slides [19]. Other
cohorts enrolled 192 patients suspected of acute promyelocytic leukemia [17], 372 pediatric cases yielding
approximately 12,000 cell images [18], and multicenter series in tertiary hospitals [13].

Studies were conducted across several regions, including Australia [11], China [13,17,20], Italy [15], Spain
[16], and Turkey [18]. All used manual microscopy as the reference standard, sometimes supplemented by
automated hematologyanalyzer flags or integrated laboratory verification policies. Designs were cross-
sectional with single-timepoint smear assessment; no longitudinal follow-up endpoints were reported.The
primary outcome, diagnostic accuracy for detecting leukemic or immature cells from peripheral blood
smear images, consistently showed high sensitivity and specificity across platforms. One evaluation of a
compact digital analyzer reported specificity exceeding 94% for most leukocyte classes, with sensitivity
ranging 21-86% depending on the cell type composition of leukemia smears [11]. Another analyzer
demonstrated 98.4% sensitivity and 64.0% specificity for blast detection and 98.8% sensitivity for
immature granulocytes in mixed pathology cohorts [16,15]. In a prospective cohort focused on acute
promyelocytic leukemia, abnormal promyelocytes were recognized with 95.8% sensitivity and 100.0%
specificity [17].

Machine-learning and deep-learning models also performed strongly: one classifier achieved 97.86%
sensitivity and 100% specificity on a held-out test set spanning multiple leukemia subtypes [19], and
another model recalled 97.4% of acute promyelocytic leukemia cells directly from peripheral blood smear
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images [20]. For abundant leukocyte classes (neutrophils, lymphocytes), multiple studies reported
accuracies at or above 90%, while rarer morphologies (eosinophils, basophils, atypical lymphocytes,
plasma cells) were detected less consistently [11,15].Differences between studies appeared to explain
variability in performance estimates. An analyzerassessed on leukemia-enriched smears showed only
moderate agreement with manual microscopy (k=0.52) [11], whereas a cohort using a different platform
reported very high blast sensitivity (0.984) despite lower specificity [16]. Another system performed best
within moderate white blood cell counts and showed reduced efficiency or agreement in severe
leukocytosis or leukopenia [12]. Patient mix influenced difficulty: some cohorts focused on suspected
acute promyelocytic leukemia [17], others on heterogeneous pediatrichematology [18], and still others on
multiple leukemia subtypes with normal/benign comparators [19]. Variations in smear preparation,
staining protocols, and image acquisition settings likely contributed to heterogeneity. Across instruments,
performance for common leukocyte classes remained robust (with correlations often r=0.80-0.85 for
neutrophils/lymphocytes [12]), while fragmented or rare abnormal cells remained challenging.

Secondary outcomes consistently favored digital and Al-assisted workflows. One study reported that Al
assistance increased technologist accuracy and reduced time to review by about 215 seconds per smear
compared with unaided review [14]. In prospective screening of suspected acute promyelocytic leukemia,
digital analysis shortened turnaround times for both technologists and experts relative to manual
microscopy [17]. Predictive values were high in several reports; in one comparative analysis, positive and
negative predictive values exceeded 98% for common cell categories [16], and another evaluation
observed negative predictive values of at least 96% for most abnormal classes after verification steps [15].
No implementation failures or safety concerns were reported.Additional secondary metrics, such as
agreement statistics and consistency after verification, were encouraging. One multicenter assessment
reported k-values above 0.96 for normal white blood cells and post-verification correlations above 0.93 for
abnormal differentials [13].

In a supervised classification framework, automated processing completed slide-level decisions in under 1
minute compared with approximately 30 minutes for manual examination in the same laboratory [19].
Across studies, introducing Al or digital morphology as a front-end triage consistently supported quality
control by flagging likely blasts and abnormal cells, while maintaining manual verification to adjudicate
rare findings.Instrument-specific patterns also emerged. Comparative evaluations suggested that one
platform achieved strong leukocyte differential accuracy in both normal and hematologic disease smears
and competitive detection of abnormal lymphocytes and nucleated red blood cells, whereas certain
configurations favoured plasma-cell identification on a rival system [16]. Another analyzer repeatedly
showed good agreement with reference microscopy for major leukocyte populations and high blast
sensitivity (>90%) in routine peripheral blood smear cohorts, with trueness influenced by cell prevalence
and the number of reviewed cells [12,15]. A compact analyzer used on leukemia-enriched datasets
supported reliable post-classification differentials once scientist verification was applied, indicating
practical generalizability to malignant smears [11].Overall, the evidence base indicated that digital
morphology and image-based artificial intelligence were clinically useful for peripheral blood smear
evaluation in leukemia. Digital analyzers provided sensitive screening for blasts and reproducible major-
class differentials when coupled with verification policies, while Al systems achieved high case-level
accuracy for acute leukemia detection and subtype prediction, most notably for acute promyelocytic
leukemia and lineage typing. Differences in white blood cell distributions, staining protocols, prevalence of
rare classes, dataset curation, and verification policies accounted for remaining variability in effect sizes.
The most reliable pattern combined rapid Al/digital pre-classification for triage with targeted expert
confirmation to finalize smear interpretations, especially where morphology alone may be insufficient for
chronic leukemias.

These results supported the subsequent appraisal of implementation, external validation, and quality-
management considerations. The narrative synthesis emphasized sensitivity and specificity as primary
outcomes, contextualized secondary measures such as F1 score, area under the receiver operating
characteristic curve, time savings, and inter-observer agreement, and mapped methodological differences
to observed performance ranges. The assembled evidence thus provided a coherent platform for discussing
clinical integration pathways and future research priorities across diverse laboratory environments [11-20].

DISCUSSION

Digital morphology for peripheral blood smears showed consistently strong agreement with manual
differentials for abundant leukocytes across the included studies, while performance for pathologic or rare
cells, especially blasts, remained variable [11-13,16]. Systems typically exhibited high specificity for
common classes (often >90-95%), which limited false positives for leukemia screening in general
laboratory populations [11,16,21]. However, preclassification with sensitivity for blasts fluctuated widely
(=20-90% depending on platform, dataset, and verification policy), with frequent mislabeling of lymphoid
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blasts as benign lymphocytes in leukemia-enriched cohorts [11,22-24]. These patterns were consistent with
earlier evaluations showing that automated analyzers achieved very good agreement for neutrophils and
lymphocytes (correlations frequently >0.9) but required expert review to correct atypical or immature cells
before clinical reporting [22-25]. Collectively, the evidence supported a workflow in which automated
preclassification served as a rapid triage step, followed by targeted verification to secure diagnostic-level
accuracy for malignancy detection [11-13,21].

Between-study contrasts in blast detection appeared to arise from multiple sources. Studies using compact
analyzers on leukemia-enriched samples reported only moderate raw agreement with manual microscopy
(e.g., x around 0.5), whereas cohorts using alternative platforms recorded blast sensitivities near 0.98 at the
expense of lower specificity in some settings [11,16]. Performance depended on white blood cell
distributions (leukopenia vs leukocytosis), staining protocols, and counted-cell targets; several cohorts
noted that accuracy improved when 300-500 cells were reviewed and when abnormal categories were
explicitly verified by experienced staff [12,16,26]. These observations paralleled earlier reports in
nonselected hospital populations in which accuracy for normal classes remained high (e.g., 87-95%), while
errors concentrated in immature granulocytes, atypical lymphocytes, and plasma cells [24,25]. In practical
terms, triage-first policies, accepting high sensitivity and allowing specificity to be restored by rapid expert
confirmation, were the most dependable way to maintain diagnostic safety for suspected leukemia [11-
13,16,21].

Across platforms, secondary diagnostic metrics reinforced these conclusions. Several studies documented
high predictive values for common leukocyte categories (PPV/NPV frequently >95%) after verification,
together with robust post-verification correlations for abnormal differentials (r typically >0.9) [13,15,16].
Time-to-result gains were also observed: one cohort reported a mean reduction of =215 s per smear with
Al assistance, while others showed meaningful improvements in end-to-end turnaround for acute
promyelocytic leukemia (APL) screening versus manual workflows [14,17]. Although such efficiency
outcomes were secondary, they supported the diagnostic use case by enabling expedited review of flagged
smears without sacrificing accuracy, provided that abnormal categories were not accepted without human
oversight [11-21,26].

Findings from external literature were directionally concordant. Consensus recommendations emphasized
that digital morphology analyzers delivered reliable differentials for abundant cells but demanded rigorous
local validation and ongoing quality control for pathologic classes [21]. Early performance studies of
legacy platforms (e.g., DM96) similarly documented excellent agreement for normal leukocytes (often 0.9-
0.95) but highlighted underestimation of blasts and lower sensitivity for immature granulocytes unless
reclassification was performed by technologists [22-24].

Multicenter experiences showed accuracy varied by case-mix: pediatric settings with fewer malignant
smears reported higher overall accuracy (=95%), whereas oncology centers with a high prevalence of
abnormal cells showed lower accuracy (=87%), reflecting the persistent challenge of atypical
morphologies [25]. Meanwhile, evaluations of the DI-60 in difficult matrices (e.g., leukopenic samples)
confirmed that abnormal-cell detection could be maintained with appropriate review rules, although
efficiency sometimes decreased at very low cell counts [12,26]. Together, these external data reinforced
the central inference from the included studies: automated systems achieved high specificity and stable
performance for common classes, but sensitivity for blasts was context-dependent and benefited from
expert confirmation [11-13,21-26]. Emerging Al models trained on curated smear images achieved very
high diagnostic metrics under study conditions, often exceeding those of off-the-shelf analyzers for acute
leukemia classification. In external datasets, machine-learning pipelines reported overall accuracies around
90-95% for distinguishing acute leukemia subtypes, with some series citing sensitivity 97-99% and
specificity approaching 100% in held-out tests [29,30].

For APL in particular, deep learning systems recognized genomically imprinted morphologic features and
produced areas under the receiver operating characteristic curve around 0.86-0.91, approaching expert
performance in controlled evaluations [31]. Prospective APL screening with an Al-enhanced analyzer
demonstrated clinical sensitivity near 95-96% and specificity near 100% in a cohort of suspected cases
[17]. While promising, these results were often derived from constrained image distributions or enrichment
designs, underscoring the need for external, prospective validation against real-world smear variability
before routine replacement of manual review is considered [29-31]. In the present review, Al components
functioned best as assistive the classifiers that raised sensitivity in triage, after which verification policies
restored specificity to clinical standards [11,14,17].Experience in non-leukemic hematologic disorders
provided convergent evidence regarding strengths and blind spots of digital morphology. For red blood cell
morphology, advanced applications accurately flagged salient patterns (e.g., target and teardrop cells with
high sensitivity in controlled series) but showed reduced sensitivity for subtle poikilocytes such as
acanthocytes or spherocytes without expert reclassification [27]. Al-based detection of circulating plasma
cells achieved very high specificity (=99%) with sensitivities near 85-90% in proof-of-concept cohorts,
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illustrating the potential to enhance recognition of rare pathologic events in peripheral blood while still
necessitating technologist confirmation for final reporting [32].

These non-leukemia use cases mirrored the leukemia findings: robust performance for common or well-
patterned morphologies, tempered by imperfect sensitivity for rare or borderline classes that benefited from
human oversight [24,25,27,32].The review had limitations. Heterogeneity in study design, case-mix,
staining methods, and reporting metrics precluded any formal pooling; hence, we synthesized findings
narratively. Reference standards were typically manual microscopy, which itself has documented inter-
observer variability, particularly for atypical lymphoid cells and immature granulocytes, introducing
potential classification bias into accuracy estimates [22-24]. Several studies were single-center and
leukemia-enriched, raising concerns about spectrum effects and transportability to general laboratory
populations. Some external Al studies relied on curated or semi-annotated datasets and may have
overestimated real-world sensitivity and specificity [29-31]. Finally, although time and verification
outcomes suggested workflow benefits, none of the included studies evaluated patient-level impacts (e.qg.,
time to diagnosis, clinical outcomes), leaving the downstream clinical utility of digital morphology to be
established in future prospective research [21].This review also had strengths. It synthesized recent cohorts
alongside foundational evaluations and guideline-level recommendations, capturing both the operational
reality of current analyzers and the trajectory of Al-augmented methods [11-17,21-27,29-31]. The focus on
diagnostic metrics (sensitivity, specificity, predictive values) enabled clear, quantitative comparisons
across heterogeneous designs, while the side-by-side appraisal of internal and external evidence clarified
where automation was already dependable (common leukocytes, high specificity triage) and where caution
remained warranted (blasts and rare pathologies). By mapping accuracy ranges to concrete in workflow
policies, preclassification triage followed by targeted verification, the review provided an implementation-
oriented interpretation that laboratories could adapt to their case-mix and quality requirements [11-
13,16,21,26].In summary, the assembled evidence indicated that digital morphology analyzers were
reliable and efficient for preclassification of peripheral blood smears in routine settings, with high
specificity for common leukocyte classes and stable agreement with manual differentials [11-13,16,21,26].
Sensitivity for leukemic blasts and other rare abnormal cells remained variable across platforms and
cohorts, but verification policies consistently recovered diagnostic accuracy to acceptable levels [11,16,22-
25]. External Al studies showed potential for near-expert performance in acute leukemia classification,
particularly in APL, yet broader, prospective validation was required before routine deployment as stand-
alone diagnostics [17,29-31]. Accordingly, digital morphology and Al should be implemented as
complementary tools that enhance triage sensitivity and laboratory throughput while maintaining expert
confirmation as the standard for abnormal categories. With continued improvements in algorithms, data
diversity, and validation practices, the balance between preclassification sensitivity and confirmatory
specificity is likely to shift further in favor of automation, provided that robust quality management and
verification frameworks remain in place [21,26-27,31-33].

CONCLUSIONS

This review found that digital morphology systems and Al-assisted image analysis reliably preclassified
common leukocytes on peripheral blood smears with high specificity, but showed variable sensitivity for
blasts and other rare abnormal cells; diagnostic performance was consistently maximized when automated
triage was followed by expert verification. We therefore recommend deploying digital morphology as a
screening and workflow-acceleration tool rather than a stand-alone diagnostic for leukemia, with
mandatory human confirmation of all abnormal or uncertain categories.

Laboratories should conduct local validation across their stain protocols and case-mix, including sufficient
abnormal cases, define verification thresholds tailored to prevalence, and embed quality control with
periodic re-audits of sensitivity/specificity and error types. For Al models, implementation should include
external, prospective validation, patient-level splits to prevent leakage, clear reporting of confusion
matrices, and drift monitoring after go-live. Future research should within prioritized multicenter, real-
world studies that compare platforms head-to-head, evaluate patient-centered outcomes (time to diagnosis,
downstream testing, costs), and address known pain points (lymphoblast vs lymphocyte misclassification,
immature granulocytes, plasma cells) through data diversity, rare-class augmentation, and transparent
model governance. With these safeguards, digital morphology can safely enhance leukemia detection by
improving triage speed and consistency while preserving the diagnostic judgment of experienced
morphologists.
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Table 1. Characteristics and key findings of the studies included in the review on Digital Morphology for

Peripheral Blood Smears in Leukemia Detection.

Study Study Design | Population Intervention / | Disease / | Main Outcomes
Reference Exposure Condition
11] Cohort Leukemia-enriched CellaVision Leukemia Specificity >94%  most
Kowald et | (diagnostic peripheral smears DC-1 digital | (mixed) leukocytes; blast sensitivity
al., 2025 accuracy) morphology low (to 21%); k=0.52.
[12] Zhao | Cohort Abnormal WBC | Sysmex DI- | Hematologic | High agreement at
et al., | (diagnostic differentials 60 digital | abnormalities | moderate WBC;
2024 accuracy) morphology performance dropped in
leukocytosis/leukopenia .
[13] Jiang | Multicenter Tertiary  hospitals; | Mindray MC- | Leukocyte k>0.96 (normal WBCs);
et al., | cohort routine smears 100i digital | differentials r>0.93 post-verification
2024 morphology (abnormal differentials).
[14] Xu et | Cohort Routine PBS | Al-assisted Leukocyte Review time —215 s/smear;
al., 2023 (before-after reviews by | digital differentials accuracy improved .
Al assist) technologists morphology
workflow
[15] Zini | Cohort Neoplastic/reactive Mindray MC- | Hematologic | Immature granulocytes
et al., | (diagnostic samples 80 digital | malignancy sensitivity 98.8%; NPV
2023 accuracy) morphology screening >96% after verification.
[16] Cohort Mixed  pathology; | MC-80 vs | Leukemia Blast sensitivity 0.984;
Merino et | (platform 100 acute leukemia DM9600 (acute/mixed) | specificity 0.640;
al., 2024 comparison) digital verification required.
morphology
[17] Li et | Prospective Suspected APL cases | MC-100i Al- | Acute Sensitivity 95.8%;
al., 2025 cohort assisted promyelocytic | specificity 100.0%  for
screening leukemia abnormal promyelocytes.
[18] Prospective Pediatrichematology; | Al-based Leukemia High performance
Aktekin et | pediatric =12,000 images smear suspicion reported; exact
al., 2025 cohort analysis (pediatric) sensitivity/specificity .
[19] Dese | Cohort Mixed leukemia and | ML classifier | Leukemia Sensitivity 97.86%;
et al., | (algorithm controls on PBS | subtype specificity 100% (held-out
2021 validation) images classification | test set).
[20] Yan | Cohort Confirmed leukemia | Deep APL/ALL APL recall 97.4%; subtype
et al., | (algorithm cases learning  on | typing typing high; full metrics .
2025 validation) single  PBS
images

Abbreviations: PBS = peripheral blood smear; WBC = white blood cell; APL = acute promyelocytic leukemia;
Al = artificial intelligence; ML = machine learning; x = Cohen’s kappa; r = correlation coefficient; NPV =
negative predictive value.
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